Spaces:
Runtime error
Runtime error
| import os | |
| import math | |
| import time | |
| import numpy as np | |
| import random | |
| import threading | |
| from PIL import Image, ImageOps | |
| from moviepy.editor import VideoFileClip | |
| from datetime import datetime, timedelta | |
| from huggingface_hub import hf_hub_download, snapshot_download | |
| import insightface | |
| from insightface.app import FaceAnalysis | |
| from facexlib.parsing import init_parsing_model | |
| from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
| import torch | |
| from diffusers import CogVideoXDPMScheduler | |
| from diffusers.utils import load_image | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.training_utils import free_memory | |
| from util.utils import * | |
| from util.rife_model import load_rife_model, rife_inference_with_latents | |
| from models.utils import process_face_embeddings | |
| from models.transformer_consisid import ConsisIDTransformer3DModel | |
| from models.pipeline_consisid import ConsisIDPipeline | |
| from models.eva_clip import create_model_and_transforms | |
| from models.eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
| from models.eva_clip.utils_qformer import resize_numpy_image_long | |
| import argparse | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| def main(): | |
| parser = argparse.ArgumentParser(description="ConsisID Command Line Interface") | |
| parser.add_argument("image_path", type=str, help="Path to the input image") | |
| parser.add_argument("prompt", type=str, help="Prompt text for the generation") | |
| parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps") | |
| parser.add_argument("--guidance_scale", type=float, default=7.0, help="Guidance scale") | |
| parser.add_argument("--seed", type=int, default=42, help="Random seed for generation") | |
| parser.add_argument("--output_dir", type=str, default="./output", help="Directory to save the output video") | |
| args = parser.parse_args() | |
| # Download models | |
| hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran") | |
| snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife") | |
| snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") | |
| model_path = "BestWishYsh/ConsisID-preview" | |
| lora_path = None | |
| lora_rank = 128 | |
| dtype = torch.bfloat16 | |
| if os.path.exists(os.path.join(model_path, "transformer_ema")): | |
| subfolder = "transformer_ema" | |
| else: | |
| subfolder = "transformer" | |
| transformer = ConsisIDTransformer3DModel.from_pretrained_cus(model_path, subfolder=subfolder) | |
| scheduler = CogVideoXDPMScheduler.from_pretrained(model_path, subfolder="scheduler") | |
| try: | |
| is_kps = transformer.config.is_kps | |
| except: | |
| is_kps = False | |
| # 1. load face helper models | |
| face_helper = FaceRestoreHelper( | |
| upscale_factor=1, | |
| face_size=512, | |
| crop_ratio=(1, 1), | |
| det_model='retinaface_resnet50', | |
| save_ext='png', | |
| device=device, | |
| model_rootpath=os.path.join(model_path, "face_encoder") | |
| ) | |
| face_helper.face_parse = None | |
| face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device, model_rootpath=os.path.join(model_path, "face_encoder")) | |
| face_helper.face_det.eval() | |
| face_helper.face_parse.eval() | |
| model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"), force_custom_clip=True) | |
| face_clip_model = model.visual | |
| face_clip_model.eval() | |
| eva_transform_mean = getattr(face_clip_model, 'image_mean', OPENAI_DATASET_MEAN) | |
| eva_transform_std = getattr(face_clip_model, 'image_std', OPENAI_DATASET_STD) | |
| if not isinstance(eva_transform_mean, (list, tuple)): | |
| eva_transform_mean = (eva_transform_mean,) * 3 | |
| if not isinstance(eva_transform_std, (list, tuple)): | |
| eva_transform_std = (eva_transform_std,) * 3 | |
| eva_transform_mean = eva_transform_mean | |
| eva_transform_std = eva_transform_std | |
| face_main_model = FaceAnalysis(name='antelopev2', root=os.path.join(model_path, "face_encoder"), providers=['CUDAExecutionProvider']) | |
| handler_ante = insightface.model_zoo.get_model(f'{model_path}/face_encoder/models/antelopev2/glintr100.onnx', providers=['CUDAExecutionProvider']) | |
| face_main_model.prepare(ctx_id=0, det_size=(640, 640)) | |
| handler_ante.prepare(ctx_id=0) | |
| face_clip_model.to(device, dtype=dtype) | |
| face_helper.face_det.to(device) | |
| face_helper.face_parse.to(device) | |
| transformer.to(device, dtype=dtype) | |
| free_memory() | |
| pipe = ConsisIDPipeline.from_pretrained(model_path, transformer=transformer, scheduler=scheduler, torch_dtype=dtype) | |
| # If you're using with lora, add this code | |
| if lora_path: | |
| pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1") | |
| pipe.fuse_lora(lora_scale=1 / lora_rank) | |
| scheduler_args = {} | |
| if "variance_type" in pipe.scheduler.config: | |
| variance_type = pipe.scheduler.config.variance_type | |
| if variance_type in ["learned", "learned_range"]: | |
| variance_type = "fixed_small" | |
| scheduler_args["variance_type"] = variance_type | |
| pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args) | |
| #pipe.to(device) | |
| pipe.enable_model_cpu_offload() | |
| pipe.enable_sequential_cpu_offload() | |
| pipe.vae.enable_slicing() | |
| pipe.vae.enable_tiling() | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| upscale_model = load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device) | |
| frame_interpolation_model = load_rife_model("model_rife") | |
| def infer( | |
| prompt: str, | |
| image_input: str, | |
| num_inference_steps: int, | |
| guidance_scale: float, | |
| seed: int = 42, | |
| ): | |
| if seed == -1: | |
| seed = random.randint(0, 2**8 - 1) | |
| id_image = np.array(ImageOps.exif_transpose(Image.open(image_input)).convert("RGB")) | |
| id_image = resize_numpy_image_long(id_image, 1024) | |
| id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper, face_clip_model, handler_ante, | |
| eva_transform_mean, eva_transform_std, | |
| face_main_model, device, dtype, id_image, | |
| original_id_image=id_image, is_align_face=True, | |
| cal_uncond=False) | |
| if is_kps: | |
| kps_cond = face_kps | |
| else: | |
| kps_cond = None | |
| tensor = align_crop_face_image.cpu().detach() | |
| tensor = tensor.squeeze() | |
| tensor = tensor.permute(1, 2, 0) | |
| tensor = tensor.numpy() * 255 | |
| tensor = tensor.astype(np.uint8) | |
| image = ImageOps.exif_transpose(Image.fromarray(tensor)) | |
| prompt = prompt.strip('"') | |
| generator = torch.Generator(device).manual_seed(seed) if seed else None | |
| video_pt = pipe( | |
| prompt=prompt, | |
| image=image, | |
| num_videos_per_prompt=1, | |
| num_inference_steps=num_inference_steps, | |
| num_frames=49, | |
| use_dynamic_cfg=False, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| id_vit_hidden=id_vit_hidden, | |
| id_cond=id_cond, | |
| kps_cond=kps_cond, | |
| output_type="pt", | |
| ).frames | |
| free_memory() | |
| return (video_pt, seed) | |
| def save_video(tensor: Union[List[np.ndarray], List[PIL.Image.Image]], fps: int = 8, output_dir = "output"): | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| video_path = f"./{output_dir}/{timestamp}.mp4" | |
| os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
| export_to_video(tensor, video_path, fps=fps) | |
| return video_path | |
| def convert_to_gif(video_path): | |
| clip = VideoFileClip(video_path) | |
| gif_path = video_path.replace(".mp4", ".gif") | |
| clip.write_gif(gif_path, fps=8) | |
| return gif_path | |
| def delete_old_files(): | |
| while True: | |
| now = datetime.now() | |
| cutoff = now - timedelta(minutes=10) | |
| directories = [args.output_dir] | |
| for directory in directories: | |
| for filename in os.listdir(directory): | |
| file_path = os.path.join(directory, filename) | |
| if os.path.isfile(file_path): | |
| file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path)) | |
| if file_mtime < cutoff: | |
| os.remove(file_path) | |
| time.sleep(600) | |
| threading.Thread(target=delete_old_files, daemon=True).start() | |
| latents, seed = infer( | |
| args.prompt, | |
| args.image_path, | |
| num_inference_steps=args.num_inference_steps, | |
| guidance_scale=args.guidance_scale, | |
| seed=args.seed, | |
| ) | |
| batch_size = latents.shape[0] | |
| batch_video_frames = [] | |
| for batch_idx in range(batch_size): | |
| pt_image = latents[batch_idx] | |
| pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])]) | |
| image_np = VaeImageProcessor.pt_to_numpy(pt_image) | |
| image_pil = VaeImageProcessor.numpy_to_pil(image_np) | |
| batch_video_frames.append(image_pil) | |
| video_path = save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6), output_dir=args.output_dir) | |
| gif_path = convert_to_gif(video_path) | |
| print(f"Video saved to: {video_path}") | |
| print(f"GIF saved to: {gif_path}") | |
| if __name__ == "__main__": | |
| main() | |