Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| import os | |
| import cv2 | |
| import numpy as np | |
| import scipy.ndimage | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import torch | |
| import torchvision | |
| import gc | |
| try: | |
| from model.modules.flow_comp_raft import RAFT_bi | |
| from model.recurrent_flow_completion import RecurrentFlowCompleteNet | |
| from model.propainter import InpaintGenerator | |
| from utils.download_util import load_file_from_url | |
| from core.utils import to_tensors | |
| from model.misc import get_device | |
| except: | |
| from propainter.model.modules.flow_comp_raft import RAFT_bi | |
| from propainter.model.recurrent_flow_completion import RecurrentFlowCompleteNet | |
| from propainter.model.propainter import InpaintGenerator | |
| from propainter.utils.download_util import load_file_from_url | |
| from propainter.core.utils import to_tensors | |
| from propainter.model.misc import get_device | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/' | |
| MaxSideThresh = 960 | |
| # resize frames | |
| def resize_frames(frames, size=None): | |
| if size is not None: | |
| out_size = size | |
| process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8) | |
| frames = [f.resize(process_size) for f in frames] | |
| else: | |
| out_size = frames[0].size | |
| process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8) | |
| if not out_size == process_size: | |
| frames = [f.resize(process_size) for f in frames] | |
| return frames, process_size, out_size | |
| # read frames from video | |
| def read_frame_from_videos(frame_root, video_length): | |
| if frame_root.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path | |
| video_name = os.path.basename(frame_root)[:-4] | |
| vframes, aframes, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec', end_pts=video_length) # RGB | |
| frames = list(vframes.numpy()) | |
| frames = [Image.fromarray(f) for f in frames] | |
| fps = info['video_fps'] | |
| nframes = len(frames) | |
| else: | |
| video_name = os.path.basename(frame_root) | |
| frames = [] | |
| fr_lst = sorted(os.listdir(frame_root)) | |
| for fr in fr_lst: | |
| frame = cv2.imread(os.path.join(frame_root, fr)) | |
| frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
| frames.append(frame) | |
| fps = None | |
| nframes = len(frames) | |
| size = frames[0].size | |
| return frames, fps, size, video_name, nframes | |
| def binary_mask(mask, th=0.1): | |
| mask[mask>th] = 1 | |
| mask[mask<=th] = 0 | |
| return mask | |
| # read frame-wise masks | |
| def read_mask(mpath, frames_len, size, flow_mask_dilates=8, mask_dilates=5): | |
| masks_img = [] | |
| masks_dilated = [] | |
| flow_masks = [] | |
| if mpath.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path | |
| masks_img = [Image.open(mpath)] | |
| elif mpath.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path | |
| cap = cv2.VideoCapture(mpath) | |
| if not cap.isOpened(): | |
| print("Error: Could not open video.") | |
| exit() | |
| idx = 0 | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| if(idx >= frames_len): | |
| break | |
| masks_img.append(Image.fromarray(frame)) | |
| idx += 1 | |
| cap.release() | |
| else: | |
| mnames = sorted(os.listdir(mpath)) | |
| for mp in mnames: | |
| masks_img.append(Image.open(os.path.join(mpath, mp))) | |
| # print(mp) | |
| for mask_img in masks_img: | |
| if size is not None: | |
| mask_img = mask_img.resize(size, Image.NEAREST) | |
| mask_img = np.array(mask_img.convert('L')) | |
| # Dilate 8 pixel so that all known pixel is trustworthy | |
| if flow_mask_dilates > 0: | |
| flow_mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=flow_mask_dilates).astype(np.uint8) | |
| else: | |
| flow_mask_img = binary_mask(mask_img).astype(np.uint8) | |
| # Close the small holes inside the foreground objects | |
| # flow_mask_img = cv2.morphologyEx(flow_mask_img, cv2.MORPH_CLOSE, np.ones((21, 21),np.uint8)).astype(bool) | |
| # flow_mask_img = scipy.ndimage.binary_fill_holes(flow_mask_img).astype(np.uint8) | |
| flow_masks.append(Image.fromarray(flow_mask_img * 255)) | |
| if mask_dilates > 0: | |
| mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=mask_dilates).astype(np.uint8) | |
| else: | |
| mask_img = binary_mask(mask_img).astype(np.uint8) | |
| masks_dilated.append(Image.fromarray(mask_img * 255)) | |
| if len(masks_img) == 1: | |
| flow_masks = flow_masks * frames_len | |
| masks_dilated = masks_dilated * frames_len | |
| return flow_masks, masks_dilated | |
| def get_ref_index(mid_neighbor_id, neighbor_ids, length, ref_stride=10, ref_num=-1): | |
| ref_index = [] | |
| if ref_num == -1: | |
| for i in range(0, length, ref_stride): | |
| if i not in neighbor_ids: | |
| ref_index.append(i) | |
| else: | |
| start_idx = max(0, mid_neighbor_id - ref_stride * (ref_num // 2)) | |
| end_idx = min(length, mid_neighbor_id + ref_stride * (ref_num // 2)) | |
| for i in range(start_idx, end_idx, ref_stride): | |
| if i not in neighbor_ids: | |
| if len(ref_index) > ref_num: | |
| break | |
| ref_index.append(i) | |
| return ref_index | |
| class Propainter: | |
| def __init__( | |
| self, propainter_model_dir, device): | |
| self.device = device | |
| ############################################## | |
| # set up RAFT and flow competition model | |
| ############################################## | |
| ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'raft-things.pth'), | |
| model_dir=propainter_model_dir, progress=True, file_name=None) | |
| self.fix_raft = RAFT_bi(ckpt_path, device) | |
| ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'), | |
| model_dir=propainter_model_dir, progress=True, file_name=None) | |
| self.fix_flow_complete = RecurrentFlowCompleteNet(ckpt_path) | |
| for p in self.fix_flow_complete.parameters(): | |
| p.requires_grad = False | |
| self.fix_flow_complete.to(device) | |
| self.fix_flow_complete.eval() | |
| ############################################## | |
| # set up ProPainter model | |
| ############################################## | |
| ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'ProPainter.pth'), | |
| model_dir=propainter_model_dir, progress=True, file_name=None) | |
| self.model = InpaintGenerator(model_path=ckpt_path).to(device) | |
| self.model.eval() | |
| def forward(self, video, mask, output_path, resize_ratio=0.6, video_length=2, height=-1, width=-1, | |
| mask_dilation=4, ref_stride=10, neighbor_length=10, subvideo_length=80, | |
| raft_iter=20, save_fps=24, save_frames=False, fp16=True): | |
| # Use fp16 precision during inference to reduce running memory cost | |
| use_half = True if fp16 else False | |
| if self.device == torch.device('cpu'): | |
| use_half = False | |
| ################ read input video ################ | |
| frames, fps, size, video_name, nframes = read_frame_from_videos(video, video_length) | |
| frames = frames[:nframes] | |
| if not width == -1 and not height == -1: | |
| size = (width, height) | |
| longer_edge = max(size[0], size[1]) | |
| if(longer_edge > MaxSideThresh): | |
| scale = MaxSideThresh / longer_edge | |
| resize_ratio = resize_ratio * scale | |
| if not resize_ratio == 1.0: | |
| size = (int(resize_ratio * size[0]), int(resize_ratio * size[1])) | |
| frames, size, out_size = resize_frames(frames, size) | |
| fps = save_fps if fps is None else fps | |
| ################ read mask ################ | |
| frames_len = len(frames) | |
| flow_masks, masks_dilated = read_mask(mask, frames_len, size, | |
| flow_mask_dilates=mask_dilation, | |
| mask_dilates=mask_dilation) | |
| flow_masks = flow_masks[:nframes] | |
| masks_dilated = masks_dilated[:nframes] | |
| w, h = size | |
| ################ adjust input ################ | |
| frames_len = min(len(frames), len(masks_dilated)) | |
| frames = frames[:frames_len] | |
| flow_masks = flow_masks[:frames_len] | |
| masks_dilated = masks_dilated[:frames_len] | |
| ori_frames_inp = [np.array(f).astype(np.uint8) for f in frames] | |
| frames = to_tensors()(frames).unsqueeze(0) * 2 - 1 | |
| flow_masks = to_tensors()(flow_masks).unsqueeze(0) | |
| masks_dilated = to_tensors()(masks_dilated).unsqueeze(0) | |
| frames, flow_masks, masks_dilated = frames.to(self.device), flow_masks.to(self.device), masks_dilated.to(self.device) | |
| ############################################## | |
| # ProPainter inference | |
| ############################################## | |
| video_length = frames.size(1) | |
| print(f'Priori generating: [{video_length} frames]...') | |
| with torch.no_grad(): | |
| # ---- compute flow ---- | |
| new_longer_edge = max(frames.size(-1), frames.size(-2)) | |
| if new_longer_edge <= 640: | |
| short_clip_len = 12 | |
| elif new_longer_edge <= 720: | |
| short_clip_len = 8 | |
| elif new_longer_edge <= 1280: | |
| short_clip_len = 4 | |
| else: | |
| short_clip_len = 2 | |
| # use fp32 for RAFT | |
| if frames.size(1) > short_clip_len: | |
| gt_flows_f_list, gt_flows_b_list = [], [] | |
| for f in range(0, video_length, short_clip_len): | |
| end_f = min(video_length, f + short_clip_len) | |
| if f == 0: | |
| flows_f, flows_b = self.fix_raft(frames[:,f:end_f], iters=raft_iter) | |
| else: | |
| flows_f, flows_b = self.fix_raft(frames[:,f-1:end_f], iters=raft_iter) | |
| gt_flows_f_list.append(flows_f) | |
| gt_flows_b_list.append(flows_b) | |
| torch.cuda.empty_cache() | |
| gt_flows_f = torch.cat(gt_flows_f_list, dim=1) | |
| gt_flows_b = torch.cat(gt_flows_b_list, dim=1) | |
| gt_flows_bi = (gt_flows_f, gt_flows_b) | |
| else: | |
| gt_flows_bi = self.fix_raft(frames, iters=raft_iter) | |
| torch.cuda.empty_cache() | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| if use_half: | |
| frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half() | |
| gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half()) | |
| self.fix_flow_complete = self.fix_flow_complete.half() | |
| self.model = self.model.half() | |
| # ---- complete flow ---- | |
| flow_length = gt_flows_bi[0].size(1) | |
| if flow_length > subvideo_length: | |
| pred_flows_f, pred_flows_b = [], [] | |
| pad_len = 5 | |
| for f in range(0, flow_length, subvideo_length): | |
| s_f = max(0, f - pad_len) | |
| e_f = min(flow_length, f + subvideo_length + pad_len) | |
| pad_len_s = max(0, f) - s_f | |
| pad_len_e = e_f - min(flow_length, f + subvideo_length) | |
| pred_flows_bi_sub, _ = self.fix_flow_complete.forward_bidirect_flow( | |
| (gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]), | |
| flow_masks[:, s_f:e_f+1]) | |
| pred_flows_bi_sub = self.fix_flow_complete.combine_flow( | |
| (gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]), | |
| pred_flows_bi_sub, | |
| flow_masks[:, s_f:e_f+1]) | |
| pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e]) | |
| pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e]) | |
| torch.cuda.empty_cache() | |
| pred_flows_f = torch.cat(pred_flows_f, dim=1) | |
| pred_flows_b = torch.cat(pred_flows_b, dim=1) | |
| pred_flows_bi = (pred_flows_f, pred_flows_b) | |
| else: | |
| pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks) | |
| pred_flows_bi = self.fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks) | |
| torch.cuda.empty_cache() | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| masks_dilated_ori = masks_dilated.clone() | |
| # ---- Pre-propagation ---- | |
| subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation | |
| if(len(frames[0]))>subvideo_length_img_prop: # perform propagation only when length of frames is larger than subvideo_length_img_prop | |
| sample_rate = len(frames[0])//(subvideo_length_img_prop//2) | |
| index_sample = list(range(0, len(frames[0]), sample_rate)) | |
| sample_frames = torch.stack([frames[0][i].to(torch.float32) for i in index_sample]).unsqueeze(0) # use fp32 for RAFT | |
| sample_masks_dilated = torch.stack([masks_dilated[0][i] for i in index_sample]).unsqueeze(0) | |
| sample_flow_masks = torch.stack([flow_masks[0][i] for i in index_sample]).unsqueeze(0) | |
| ## recompute flow for sampled frames | |
| # use fp32 for RAFT | |
| sample_video_length = sample_frames.size(1) | |
| if sample_frames.size(1) > short_clip_len: | |
| gt_flows_f_list, gt_flows_b_list = [], [] | |
| for f in range(0, sample_video_length, short_clip_len): | |
| end_f = min(sample_video_length, f + short_clip_len) | |
| if f == 0: | |
| flows_f, flows_b = self.fix_raft(sample_frames[:,f:end_f], iters=raft_iter) | |
| else: | |
| flows_f, flows_b = self.fix_raft(sample_frames[:,f-1:end_f], iters=raft_iter) | |
| gt_flows_f_list.append(flows_f) | |
| gt_flows_b_list.append(flows_b) | |
| torch.cuda.empty_cache() | |
| gt_flows_f = torch.cat(gt_flows_f_list, dim=1) | |
| gt_flows_b = torch.cat(gt_flows_b_list, dim=1) | |
| sample_gt_flows_bi = (gt_flows_f, gt_flows_b) | |
| else: | |
| sample_gt_flows_bi = self.fix_raft(sample_frames, iters=raft_iter) | |
| torch.cuda.empty_cache() | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| if use_half: | |
| sample_frames, sample_flow_masks, sample_masks_dilated = sample_frames.half(), sample_flow_masks.half(), sample_masks_dilated.half() | |
| sample_gt_flows_bi = (sample_gt_flows_bi[0].half(), sample_gt_flows_bi[1].half()) | |
| # ---- complete flow ---- | |
| flow_length = sample_gt_flows_bi[0].size(1) | |
| if flow_length > subvideo_length: | |
| pred_flows_f, pred_flows_b = [], [] | |
| pad_len = 5 | |
| for f in range(0, flow_length, subvideo_length): | |
| s_f = max(0, f - pad_len) | |
| e_f = min(flow_length, f + subvideo_length + pad_len) | |
| pad_len_s = max(0, f) - s_f | |
| pad_len_e = e_f - min(flow_length, f + subvideo_length) | |
| pred_flows_bi_sub, _ = self.fix_flow_complete.forward_bidirect_flow( | |
| (sample_gt_flows_bi[0][:, s_f:e_f], sample_gt_flows_bi[1][:, s_f:e_f]), | |
| sample_flow_masks[:, s_f:e_f+1]) | |
| pred_flows_bi_sub = self.fix_flow_complete.combine_flow( | |
| (sample_gt_flows_bi[0][:, s_f:e_f], sample_gt_flows_bi[1][:, s_f:e_f]), | |
| pred_flows_bi_sub, | |
| sample_flow_masks[:, s_f:e_f+1]) | |
| pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e]) | |
| pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e]) | |
| torch.cuda.empty_cache() | |
| pred_flows_f = torch.cat(pred_flows_f, dim=1) | |
| pred_flows_b = torch.cat(pred_flows_b, dim=1) | |
| sample_pred_flows_bi = (pred_flows_f, pred_flows_b) | |
| else: | |
| sample_pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(sample_gt_flows_bi, sample_flow_masks) | |
| sample_pred_flows_bi = self.fix_flow_complete.combine_flow(sample_gt_flows_bi, sample_pred_flows_bi, sample_flow_masks) | |
| torch.cuda.empty_cache() | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| masked_frames = sample_frames * (1 - sample_masks_dilated) | |
| if sample_video_length > subvideo_length_img_prop: | |
| updated_frames, updated_masks = [], [] | |
| pad_len = 10 | |
| for f in range(0, sample_video_length, subvideo_length_img_prop): | |
| s_f = max(0, f - pad_len) | |
| e_f = min(sample_video_length, f + subvideo_length_img_prop + pad_len) | |
| pad_len_s = max(0, f) - s_f | |
| pad_len_e = e_f - min(sample_video_length, f + subvideo_length_img_prop) | |
| b, t, _, _, _ = sample_masks_dilated[:, s_f:e_f].size() | |
| pred_flows_bi_sub = (sample_pred_flows_bi[0][:, s_f:e_f-1], sample_pred_flows_bi[1][:, s_f:e_f-1]) | |
| prop_imgs_sub, updated_local_masks_sub = self.model.img_propagation(masked_frames[:, s_f:e_f], | |
| pred_flows_bi_sub, | |
| sample_masks_dilated[:, s_f:e_f], | |
| 'nearest') | |
| updated_frames_sub = sample_frames[:, s_f:e_f] * (1 - sample_masks_dilated[:, s_f:e_f]) + \ | |
| prop_imgs_sub.view(b, t, 3, h, w) * sample_masks_dilated[:, s_f:e_f] | |
| updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w) | |
| updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e]) | |
| updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e]) | |
| torch.cuda.empty_cache() | |
| updated_frames = torch.cat(updated_frames, dim=1) | |
| updated_masks = torch.cat(updated_masks, dim=1) | |
| else: | |
| b, t, _, _, _ = sample_masks_dilated.size() | |
| prop_imgs, updated_local_masks = self.model.img_propagation(masked_frames, sample_pred_flows_bi, sample_masks_dilated, 'nearest') | |
| updated_frames = sample_frames * (1 - sample_masks_dilated) + prop_imgs.view(b, t, 3, h, w) * sample_masks_dilated | |
| updated_masks = updated_local_masks.view(b, t, 1, h, w) | |
| torch.cuda.empty_cache() | |
| ## replace input frames/masks with updated frames/masks | |
| for i,index in enumerate(index_sample): | |
| frames[0][index] = updated_frames[0][i] | |
| masks_dilated[0][index] = updated_masks[0][i] | |
| # ---- frame-by-frame image propagation ---- | |
| masked_frames = frames * (1 - masks_dilated) | |
| subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation | |
| if video_length > subvideo_length_img_prop: | |
| updated_frames, updated_masks = [], [] | |
| pad_len = 10 | |
| for f in range(0, video_length, subvideo_length_img_prop): | |
| s_f = max(0, f - pad_len) | |
| e_f = min(video_length, f + subvideo_length_img_prop + pad_len) | |
| pad_len_s = max(0, f) - s_f | |
| pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop) | |
| b, t, _, _, _ = masks_dilated[:, s_f:e_f].size() | |
| pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1]) | |
| prop_imgs_sub, updated_local_masks_sub = self.model.img_propagation(masked_frames[:, s_f:e_f], | |
| pred_flows_bi_sub, | |
| masks_dilated[:, s_f:e_f], | |
| 'nearest') | |
| updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \ | |
| prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f] | |
| updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w) | |
| updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e]) | |
| updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e]) | |
| torch.cuda.empty_cache() | |
| updated_frames = torch.cat(updated_frames, dim=1) | |
| updated_masks = torch.cat(updated_masks, dim=1) | |
| else: | |
| b, t, _, _, _ = masks_dilated.size() | |
| prop_imgs, updated_local_masks = self.model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest') | |
| updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated | |
| updated_masks = updated_local_masks.view(b, t, 1, h, w) | |
| torch.cuda.empty_cache() | |
| comp_frames = [None] * video_length | |
| neighbor_stride = neighbor_length // 2 | |
| if video_length > subvideo_length: | |
| ref_num = subvideo_length // ref_stride | |
| else: | |
| ref_num = -1 | |
| torch.cuda.empty_cache() | |
| # ---- feature propagation + transformer ---- | |
| for f in tqdm(range(0, video_length, neighbor_stride)): | |
| neighbor_ids = [ | |
| i for i in range(max(0, f - neighbor_stride), | |
| min(video_length, f + neighbor_stride + 1)) | |
| ] | |
| ref_ids = get_ref_index(f, neighbor_ids, video_length, ref_stride, ref_num) | |
| selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :] | |
| selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :] | |
| selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :] | |
| selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :]) | |
| with torch.no_grad(): | |
| # 1.0 indicates mask | |
| l_t = len(neighbor_ids) | |
| # pred_img = selected_imgs # results of image propagation | |
| pred_img = self.model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t) | |
| pred_img = pred_img.view(-1, 3, h, w) | |
| ## compose with input frames | |
| pred_img = (pred_img + 1) / 2 | |
| pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255 | |
| binary_masks = masks_dilated_ori[0, neighbor_ids, :, :, :].cpu().permute( | |
| 0, 2, 3, 1).numpy().astype(np.uint8) # use original mask | |
| for i in range(len(neighbor_ids)): | |
| idx = neighbor_ids[i] | |
| img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \ | |
| + ori_frames_inp[idx] * (1 - binary_masks[i]) | |
| if comp_frames[idx] is None: | |
| comp_frames[idx] = img | |
| else: | |
| comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5 | |
| comp_frames[idx] = comp_frames[idx].astype(np.uint8) | |
| torch.cuda.empty_cache() | |
| ##save composed video## | |
| comp_frames = [cv2.resize(f, out_size) for f in comp_frames] | |
| writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), | |
| fps, (comp_frames[0].shape[1],comp_frames[0].shape[0])) | |
| for f in range(video_length): | |
| frame = comp_frames[f].astype(np.uint8) | |
| writer.write(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
| writer.release() | |
| torch.cuda.empty_cache() | |
| return output_path | |
| if __name__ == '__main__': | |
| device = get_device() | |
| propainter_model_dir = "weights/propainter" | |
| propainter = Propainter(propainter_model_dir, device=device) | |
| video = "examples/example1/video.mp4" | |
| mask = "examples/example1/mask.mp4" | |
| output = "results/priori.mp4" | |
| res = propainter.forward(video, mask, output) | |