|  | import argparse | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from safetensors.torch import load_file, save_file | 
					
						
						|  | from safetensors import safe_open | 
					
						
						|  | from utils import model_utils | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  | logging.basicConfig(level=logging.INFO) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_from_diffusers(prefix, weights_sd): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_weights_sd = {} | 
					
						
						|  | lora_dims = {} | 
					
						
						|  | for key, weight in weights_sd.items(): | 
					
						
						|  | diffusers_prefix, key_body = key.split(".", 1) | 
					
						
						|  | if diffusers_prefix != "diffusion_model": | 
					
						
						|  | logger.warning(f"unexpected key: {key} in diffusers format") | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | new_key = f"{prefix}{key_body}".replace(".", "_").replace("_lora_A_", ".lora_down.").replace("_lora_B_", ".lora_up.") | 
					
						
						|  | new_weights_sd[new_key] = weight | 
					
						
						|  |  | 
					
						
						|  | lora_name = new_key.split(".")[0] | 
					
						
						|  | if lora_name not in lora_dims and "lora_down" in new_key: | 
					
						
						|  | lora_dims[lora_name] = weight.shape[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for lora_name, dim in lora_dims.items(): | 
					
						
						|  | new_weights_sd[f"{lora_name}.alpha"] = torch.tensor(dim) | 
					
						
						|  |  | 
					
						
						|  | return new_weights_sd | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_to_diffusers(prefix, weights_sd): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | lora_alphas = {} | 
					
						
						|  | for key, weight in weights_sd.items(): | 
					
						
						|  | if key.startswith(prefix): | 
					
						
						|  | lora_name = key.split(".", 1)[0] | 
					
						
						|  | if lora_name not in lora_alphas and "alpha" in key: | 
					
						
						|  | lora_alphas[lora_name] = weight | 
					
						
						|  |  | 
					
						
						|  | new_weights_sd = {} | 
					
						
						|  | for key, weight in weights_sd.items(): | 
					
						
						|  | if key.startswith(prefix): | 
					
						
						|  | if "alpha" in key: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | lora_name = key.split(".", 1)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | module_name = lora_name[len(prefix) :] | 
					
						
						|  | module_name = module_name.replace("_", ".") | 
					
						
						|  | module_name = module_name.replace("double.blocks.", "double_blocks.") | 
					
						
						|  | module_name = module_name.replace("single.blocks.", "single_blocks.") | 
					
						
						|  | module_name = module_name.replace("img.", "img_") | 
					
						
						|  | module_name = module_name.replace("txt.", "txt_") | 
					
						
						|  | module_name = module_name.replace("attn.", "attn_") | 
					
						
						|  |  | 
					
						
						|  | diffusers_prefix = "diffusion_model" | 
					
						
						|  | if "lora_down" in key: | 
					
						
						|  | new_key = f"{diffusers_prefix}.{module_name}.lora_A.weight" | 
					
						
						|  | dim = weight.shape[0] | 
					
						
						|  | elif "lora_up" in key: | 
					
						
						|  | new_key = f"{diffusers_prefix}.{module_name}.lora_B.weight" | 
					
						
						|  | dim = weight.shape[1] | 
					
						
						|  | else: | 
					
						
						|  | logger.warning(f"unexpected key: {key} in default LoRA format") | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if lora_name in lora_alphas: | 
					
						
						|  |  | 
					
						
						|  | scale = lora_alphas[lora_name] / dim | 
					
						
						|  | scale = scale.sqrt() | 
					
						
						|  | weight = weight * scale | 
					
						
						|  | else: | 
					
						
						|  | logger.warning(f"missing alpha for {lora_name}") | 
					
						
						|  |  | 
					
						
						|  | new_weights_sd[new_key] = weight | 
					
						
						|  |  | 
					
						
						|  | return new_weights_sd | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert(input_file, output_file, target_format): | 
					
						
						|  | logger.info(f"loading {input_file}") | 
					
						
						|  | weights_sd = load_file(input_file) | 
					
						
						|  | with safe_open(input_file, framework="pt") as f: | 
					
						
						|  | metadata = f.metadata() | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"converting to {target_format}") | 
					
						
						|  | prefix = "lora_unet_" | 
					
						
						|  | if target_format == "default": | 
					
						
						|  | new_weights_sd = convert_from_diffusers(prefix, weights_sd) | 
					
						
						|  | metadata = metadata or {} | 
					
						
						|  | model_utils.precalculate_safetensors_hashes(new_weights_sd, metadata) | 
					
						
						|  | elif target_format == "other": | 
					
						
						|  | new_weights_sd = convert_to_diffusers(prefix, weights_sd) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"unknown target format: {target_format}") | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"saving to {output_file}") | 
					
						
						|  | save_file(new_weights_sd, output_file, metadata=metadata) | 
					
						
						|  |  | 
					
						
						|  | logger.info("done") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_args(): | 
					
						
						|  | parser = argparse.ArgumentParser(description="Convert LoRA weights between default and other formats") | 
					
						
						|  | parser.add_argument("--input", type=str, required=True, help="input model file") | 
					
						
						|  | parser.add_argument("--output", type=str, required=True, help="output model file") | 
					
						
						|  | parser.add_argument("--target", type=str, required=True, choices=["other", "default"], help="target format") | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  | return args | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | args = parse_args() | 
					
						
						|  | convert(args.input, args.output, args.target) | 
					
						
						|  |  |