Spaces:
Running
Running
| import os | |
| import gc | |
| import numpy as np | |
| import torch | |
| import spaces | |
| import gradio as gr | |
| from moviepy.editor import VideoFileClip, concatenate_videoclips | |
| from video_depth_anything.video_depth import VideoDepthAnything | |
| from utils.dc_utils import read_video_frames, save_video | |
| from huggingface_hub import hf_hub_download | |
| examples = [ | |
| ['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280], | |
| ['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280], | |
| ['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280], | |
| ['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280], | |
| ['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280], | |
| ['assets/example_videos/davis_burnout.mp4', -1, -1, 1280], | |
| ['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280], | |
| ['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280], | |
| ['assets/example_videos/obj_1.mp4', -1, -1, 1280], | |
| ['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280], | |
| ] | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| model_configs = { | |
| 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
| 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
| } | |
| encoder2name = { | |
| 'vits': 'Small', | |
| 'vitl': 'Large', | |
| } | |
| #encoder = 'vitl' | |
| encoder = 'vits' | |
| model_name = encoder2name[encoder] | |
| video_depth_anything = VideoDepthAnything(**model_configs[encoder]) | |
| filepath = hf_hub_download(repo_id=f"depth-anything/Video-Depth-Anything-{model_name}", filename=f"video_depth_anything_{encoder}.pth", repo_type="model") | |
| video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu')) | |
| video_depth_anything = video_depth_anything.to(DEVICE).eval() | |
| title = "# Video Depth Anything" | |
| description = """Official demo for **Video Depth Anything**. | |
| Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details.""" | |
| def infer_video_depth( | |
| input_video: str, | |
| max_len: int = -1, | |
| target_fps: int = -1, | |
| max_res: int = 1280, | |
| grayscale: bool = False, | |
| output_dir: str = './outputs', | |
| input_size: int = 518, | |
| ): | |
| if not os.path.exists(output_dir): | |
| os.makedirs(output_dir) | |
| video_name = os.path.basename(input_video) | |
| processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_src.mp4') | |
| depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_vis.mp4') | |
| # Load the video | |
| clip = VideoFileClip(input_video) | |
| fps = clip.fps | |
| total_frames = int(clip.duration * fps) | |
| # Define the number of frames per segment | |
| frames_per_segment = 45 # Adjust this value based on your GPU memory | |
| segments = [] | |
| for start_frame in range(0, total_frames, frames_per_segment): | |
| end_frame = min(start_frame + frames_per_segment, total_frames) | |
| start_time = start_frame / fps | |
| end_time = end_frame / fps | |
| segment = clip.subclip(start_time, end_time) | |
| segment_path = os.path.join(output_dir, f'segment_{start_frame}.mp4') | |
| segment.write_videofile(segment_path, codec='libx264') | |
| segments.append(segment_path) | |
| # Save the processed video (concatenated segments) | |
| processed_segments = [VideoFileClip(segment) for segment in segments] | |
| final_processed_clip = concatenate_videoclips(processed_segments) | |
| final_processed_clip.write_videofile(processed_video_path, codec='libx264') | |
| # Process each segment | |
| depth_segments = [] | |
| for segment in segments: | |
| frames, target_fps = read_video_frames(segment, max_len, target_fps, max_res) | |
| print("frame length", len(frames)) | |
| depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE) | |
| depth_segment_path = os.path.join(output_dir, f'depth_{os.path.basename(segment)}') | |
| save_video(depths, depth_segment_path, fps=fps, is_depths=True, grayscale=grayscale) | |
| depth_segments.append(depth_segment_path) | |
| # Merge depth segments | |
| depth_clips = [VideoFileClip(depth_segment) for depth_segment in depth_segments] | |
| final_depth_clip = concatenate_videoclips(depth_clips) | |
| final_depth_clip.write_videofile(depth_vis_path, codec='libx264') | |
| # Clean up | |
| for segment in segments: | |
| os.remove(segment) | |
| for depth_segment in depth_segments: | |
| os.remove(depth_segment) | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return [processed_video_path, depth_vis_path] | |
| def construct_demo(): | |
| with gr.Blocks(analytics_enabled=False) as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| gr.Markdown("### If you find this work useful, please help ⭐ the [$$Github Repo$$](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!") | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=1): | |
| input_video = gr.Video(label="Input Video") | |
| with gr.Column(scale=2): | |
| with gr.Row(equal_height=True): | |
| processed_video = gr.Video( | |
| label="Preprocessed video", | |
| interactive=False, | |
| autoplay=True, | |
| loop=True, | |
| show_share_button=True, | |
| scale=5, | |
| ) | |
| depth_vis_video = gr.Video( | |
| label="Generated Depth Video", | |
| interactive=False, | |
| autoplay=True, | |
| loop=True, | |
| show_share_button=True, | |
| scale=5, | |
| ) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=1): | |
| with gr.Row(equal_height=False): | |
| with gr.Accordion("Advanced Settings", open=False): | |
| max_len = gr.Slider( | |
| label="max process length", | |
| minimum=-1, | |
| maximum=1000, | |
| value=500, | |
| step=1, | |
| ) | |
| target_fps = gr.Slider( | |
| label="target FPS", | |
| minimum=-1, | |
| maximum=30, | |
| value=15, | |
| step=1, | |
| ) | |
| max_res = gr.Slider( | |
| label="max side resolution", | |
| minimum=480, | |
| maximum=1920, | |
| value=1280, | |
| step=1, | |
| ) | |
| grayscale = gr.Checkbox( | |
| label="grayscale", | |
| value=False, | |
| ) | |
| generate_btn = gr.Button("Generate") | |
| with gr.Column(scale=2): | |
| pass | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[ | |
| input_video, | |
| max_len, | |
| target_fps, | |
| max_res | |
| ], | |
| outputs=[processed_video, depth_vis_video], | |
| fn=infer_video_depth, | |
| cache_examples="lazy", | |
| ) | |
| generate_btn.click( | |
| fn=infer_video_depth, | |
| inputs=[ | |
| input_video, | |
| max_len, | |
| target_fps, | |
| max_res, | |
| grayscale | |
| ], | |
| outputs=[processed_video, depth_vis_video], | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = construct_demo() | |
| demo.queue() | |
| demo.launch(share=True) |