Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| from dkm.utils import * | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import torch.nn.functional as F | |
| class Megadepth1500Benchmark: | |
| def __init__(self, data_root="data/megadepth", scene_names=None) -> None: | |
| if scene_names is None: | |
| self.scene_names = [ | |
| "0015_0.1_0.3.npz", | |
| "0015_0.3_0.5.npz", | |
| "0022_0.1_0.3.npz", | |
| "0022_0.3_0.5.npz", | |
| "0022_0.5_0.7.npz", | |
| ] | |
| else: | |
| self.scene_names = scene_names | |
| self.scenes = [ | |
| np.load(f"{data_root}/{scene}", allow_pickle=True) | |
| for scene in self.scene_names | |
| ] | |
| self.data_root = data_root | |
| def benchmark(self, model): | |
| with torch.no_grad(): | |
| data_root = self.data_root | |
| tot_e_t, tot_e_R, tot_e_pose = [], [], [] | |
| for scene_ind in range(len(self.scenes)): | |
| scene = self.scenes[scene_ind] | |
| pairs = scene["pair_infos"] | |
| intrinsics = scene["intrinsics"] | |
| poses = scene["poses"] | |
| im_paths = scene["image_paths"] | |
| pair_inds = range(len(pairs)) | |
| for pairind in tqdm(pair_inds): | |
| idx1, idx2 = pairs[pairind][0] | |
| K1 = intrinsics[idx1].copy() | |
| T1 = poses[idx1].copy() | |
| R1, t1 = T1[:3, :3], T1[:3, 3] | |
| K2 = intrinsics[idx2].copy() | |
| T2 = poses[idx2].copy() | |
| R2, t2 = T2[:3, :3], T2[:3, 3] | |
| R, t = compute_relative_pose(R1, t1, R2, t2) | |
| im1_path = f"{data_root}/{im_paths[idx1]}" | |
| im2_path = f"{data_root}/{im_paths[idx2]}" | |
| im1 = Image.open(im1_path) | |
| w1, h1 = im1.size | |
| im2 = Image.open(im2_path) | |
| w2, h2 = im2.size | |
| scale1 = 1200 / max(w1, h1) | |
| scale2 = 1200 / max(w2, h2) | |
| w1, h1 = scale1 * w1, scale1 * h1 | |
| w2, h2 = scale2 * w2, scale2 * h2 | |
| K1[:2] = K1[:2] * scale1 | |
| K2[:2] = K2[:2] * scale2 | |
| dense_matches, dense_certainty = model.match(im1_path, im2_path) | |
| sparse_matches, _ = model.sample( | |
| dense_matches, dense_certainty, 5000 | |
| ) | |
| kpts1 = sparse_matches[:, :2] | |
| kpts1 = torch.stack( | |
| ( | |
| w1 * (kpts1[:, 0] + 1) / 2, | |
| h1 * (kpts1[:, 1] + 1) / 2, | |
| ), | |
| axis=-1, | |
| ) | |
| kpts2 = sparse_matches[:, 2:] | |
| kpts2 = torch.stack( | |
| ( | |
| w2 * (kpts2[:, 0] + 1) / 2, | |
| h2 * (kpts2[:, 1] + 1) / 2, | |
| ), | |
| axis=-1, | |
| ) | |
| for _ in range(5): | |
| shuffling = np.random.permutation(np.arange(len(kpts1))) | |
| kpts1 = kpts1[shuffling] | |
| kpts2 = kpts2[shuffling] | |
| try: | |
| norm_threshold = 0.5 / ( | |
| np.mean(np.abs(K1[:2, :2])) | |
| + np.mean(np.abs(K2[:2, :2])) | |
| ) | |
| R_est, t_est, mask = estimate_pose( | |
| kpts1.cpu().numpy(), | |
| kpts2.cpu().numpy(), | |
| K1, | |
| K2, | |
| norm_threshold, | |
| conf=0.99999, | |
| ) | |
| T1_to_2_est = np.concatenate((R_est, t_est), axis=-1) # | |
| e_t, e_R = compute_pose_error(T1_to_2_est, R, t) | |
| e_pose = max(e_t, e_R) | |
| except Exception as e: | |
| print(repr(e)) | |
| e_t, e_R = 90, 90 | |
| e_pose = max(e_t, e_R) | |
| tot_e_t.append(e_t) | |
| tot_e_R.append(e_R) | |
| tot_e_pose.append(e_pose) | |
| tot_e_pose = np.array(tot_e_pose) | |
| thresholds = [5, 10, 20] | |
| auc = pose_auc(tot_e_pose, thresholds) | |
| acc_5 = (tot_e_pose < 5).mean() | |
| acc_10 = (tot_e_pose < 10).mean() | |
| acc_15 = (tot_e_pose < 15).mean() | |
| acc_20 = (tot_e_pose < 20).mean() | |
| map_5 = acc_5 | |
| map_10 = np.mean([acc_5, acc_10]) | |
| map_20 = np.mean([acc_5, acc_10, acc_15, acc_20]) | |
| return { | |
| "auc_5": auc[0], | |
| "auc_10": auc[1], | |
| "auc_20": auc[2], | |
| "map_5": map_5, | |
| "map_10": map_10, | |
| "map_20": map_20, | |
| } | |