Spaces:
Runtime error
Runtime error
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from kornia.geometry.subpix import dsnt | |
| from kornia.utils.grid import create_meshgrid | |
| class FineMatching(nn.Module): | |
| """FineMatching with s2d paradigm""" | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, feat_f0, feat_f1, data): | |
| """ | |
| Args: | |
| feat0 (torch.Tensor): [M, WW, C] | |
| feat1 (torch.Tensor): [M, WW, C] | |
| data (dict) | |
| Update: | |
| data (dict):{ | |
| 'expec_f' (torch.Tensor): [M, 3], | |
| 'mkpts0_f' (torch.Tensor): [M, 2], | |
| 'mkpts1_f' (torch.Tensor): [M, 2]} | |
| """ | |
| M, WW, C = feat_f0.shape | |
| W = int(math.sqrt(WW)) | |
| scale = data["hw0_i"][0] / data["hw0_f"][0] | |
| self.M, self.W, self.WW, self.C, self.scale = M, W, WW, C, scale | |
| # corner case: if no coarse matches found | |
| if M == 0: | |
| assert ( | |
| self.training == False | |
| ), "M is always >0, when training, see coarse_matching.py" | |
| # logger.warning('No matches found in coarse-level.') | |
| data.update( | |
| { | |
| "expec_f": torch.empty(0, 3, device=feat_f0.device), | |
| "mkpts0_f": data["mkpts0_c"], | |
| "mkpts1_f": data["mkpts1_c"], | |
| } | |
| ) | |
| return | |
| feat_f0_picked = feat_f0[:, WW // 2, :] | |
| sim_matrix = torch.einsum("mc,mrc->mr", feat_f0_picked, feat_f1) | |
| softmax_temp = 1.0 / C**0.5 | |
| heatmap = torch.softmax(softmax_temp * sim_matrix, dim=1) | |
| feat_f1_picked = (feat_f1 * heatmap.unsqueeze(-1)).sum(dim=1) # [M, C] | |
| heatmap = heatmap.view(-1, W, W) | |
| # compute coordinates from heatmap | |
| coords1_normalized = dsnt.spatial_expectation2d(heatmap[None], True)[ | |
| 0 | |
| ] # [M, 2] | |
| grid_normalized = create_meshgrid(W, W, True, heatmap.device).reshape( | |
| 1, -1, 2 | |
| ) # [1, WW, 2] | |
| # compute std over <x, y> | |
| var = ( | |
| torch.sum(grid_normalized**2 * heatmap.view(-1, WW, 1), dim=1) | |
| - coords1_normalized**2 | |
| ) # [M, 2] | |
| std = torch.sum( | |
| torch.sqrt(torch.clamp(var, min=1e-10)), -1 | |
| ) # [M] clamp needed for numerical stability | |
| # for fine-level supervision | |
| data.update( | |
| { | |
| "expec_f": torch.cat([coords1_normalized, std.unsqueeze(1)], -1), | |
| "descriptors0": feat_f0_picked.detach(), | |
| "descriptors1": feat_f1_picked.detach(), | |
| } | |
| ) | |
| # compute absolute kpt coords | |
| self.get_fine_match(coords1_normalized, data) | |
| def get_fine_match(self, coords1_normed, data): | |
| W, WW, C, scale = self.W, self.WW, self.C, self.scale | |
| # mkpts0_f and mkpts1_f | |
| # scale0 = scale * data['scale0'][data['b_ids']] if 'scale0' in data else scale | |
| mkpts0_f = data[ | |
| "mkpts0_c" | |
| ] # + (coords0_normed * (W // 2) * scale0 )[:len(data['mconf'])] | |
| scale1 = scale * data["scale1"][data["b_ids"]] if "scale1" in data else scale | |
| mkpts1_f = ( | |
| data["mkpts1_c"] | |
| + (coords1_normed * (W // 2) * scale1)[: len(data["mconf"])] | |
| ) | |
| data.update({"mkpts0_f": mkpts0_f, "mkpts1_f": mkpts1_f}) | |