Spaces:
Runtime error
Runtime error
| ## CroCo-Stereo and CroCo-Flow | |
| This README explains how to use CroCo-Stereo and CroCo-Flow as well as how they were trained. | |
| All commands should be launched from the root directory. | |
| ### Simple inference example | |
| We provide a simple inference exemple for CroCo-Stereo and CroCo-Flow in the Totebook `croco-stereo-flow-demo.ipynb`. | |
| Before running it, please download the trained models with: | |
| ``` | |
| bash stereoflow/download_model.sh crocostereo.pth | |
| bash stereoflow/download_model.sh crocoflow.pth | |
| ``` | |
| ### Prepare data for training or evaluation | |
| Put the datasets used for training/evaluation in `./data/stereoflow` (or update the paths at the top of `stereoflow/datasets_stereo.py` and `stereoflow/datasets_flow.py`). | |
| Please find below on the file structure should look for each dataset: | |
| <details> | |
| <summary>FlyingChairs</summary> | |
| ``` | |
| ./data/stereoflow/FlyingChairs/ | |
| └───chairs_split.txt | |
| └───data/ | |
| └─── ... | |
| ``` | |
| </details> | |
| <details> | |
| <summary>MPI-Sintel</summary> | |
| ``` | |
| ./data/stereoflow/MPI-Sintel/ | |
| └───training/ | |
| │ └───clean/ | |
| │ └───final/ | |
| │ └───flow/ | |
| └───test/ | |
| └───clean/ | |
| └───final/ | |
| ``` | |
| </details> | |
| <details> | |
| <summary>SceneFlow (including FlyingThings)</summary> | |
| ``` | |
| ./data/stereoflow/SceneFlow/ | |
| └───Driving/ | |
| │ └───disparity/ | |
| │ └───frames_cleanpass/ | |
| │ └───frames_finalpass/ | |
| └───FlyingThings/ | |
| │ └───disparity/ | |
| │ └───frames_cleanpass/ | |
| │ └───frames_finalpass/ | |
| │ └───optical_flow/ | |
| └───Monkaa/ | |
| └───disparity/ | |
| └───frames_cleanpass/ | |
| └───frames_finalpass/ | |
| ``` | |
| </details> | |
| <details> | |
| <summary>TartanAir</summary> | |
| ``` | |
| ./data/stereoflow/TartanAir/ | |
| └───abandonedfactory/ | |
| │ └───.../ | |
| └───abandonedfactory_night/ | |
| │ └───.../ | |
| └───.../ | |
| ``` | |
| </details> | |
| <details> | |
| <summary>Booster</summary> | |
| ``` | |
| ./data/stereoflow/booster_gt/ | |
| └───train/ | |
| └───balanced/ | |
| └───Bathroom/ | |
| └───Bedroom/ | |
| └───... | |
| ``` | |
| </details> | |
| <details> | |
| <summary>CREStereo</summary> | |
| ``` | |
| ./data/stereoflow/crenet_stereo_trainset/ | |
| └───stereo_trainset/ | |
| └───crestereo/ | |
| └───hole/ | |
| └───reflective/ | |
| └───shapenet/ | |
| └───tree/ | |
| ``` | |
| </details> | |
| <details> | |
| <summary>ETH3D Two-view Low-res</summary> | |
| ``` | |
| ./data/stereoflow/eth3d_lowres/ | |
| └───test/ | |
| │ └───lakeside_1l/ | |
| │ └───... | |
| └───train/ | |
| │ └───delivery_area_1l/ | |
| │ └───... | |
| └───train_gt/ | |
| └───delivery_area_1l/ | |
| └───... | |
| ``` | |
| </details> | |
| <details> | |
| <summary>KITTI 2012</summary> | |
| ``` | |
| ./data/stereoflow/kitti-stereo-2012/ | |
| └───testing/ | |
| │ └───colored_0/ | |
| │ └───colored_1/ | |
| └───training/ | |
| └───colored_0/ | |
| └───colored_1/ | |
| └───disp_occ/ | |
| └───flow_occ/ | |
| ``` | |
| </details> | |
| <details> | |
| <summary>KITTI 2015</summary> | |
| ``` | |
| ./data/stereoflow/kitti-stereo-2015/ | |
| └───testing/ | |
| │ └───image_2/ | |
| │ └───image_3/ | |
| └───training/ | |
| └───image_2/ | |
| └───image_3/ | |
| └───disp_occ_0/ | |
| └───flow_occ/ | |
| ``` | |
| </details> | |
| <details> | |
| <summary>Middlebury</summary> | |
| ``` | |
| ./data/stereoflow/middlebury | |
| └───2005/ | |
| │ └───train/ | |
| │ └───Art/ | |
| │ └───... | |
| └───2006/ | |
| │ └───Aloe/ | |
| │ └───Baby1/ | |
| │ └───... | |
| └───2014/ | |
| │ └───Adirondack-imperfect/ | |
| │ └───Adirondack-perfect/ | |
| │ └───... | |
| └───2021/ | |
| │ └───data/ | |
| │ └───artroom1/ | |
| │ └───artroom2/ | |
| │ └───... | |
| └───MiddEval3_F/ | |
| └───test/ | |
| │ └───Australia/ | |
| │ └───... | |
| └───train/ | |
| └───Adirondack/ | |
| └───... | |
| ``` | |
| </details> | |
| <details> | |
| <summary>Spring</summary> | |
| ``` | |
| ./data/stereoflow/spring/ | |
| └───test/ | |
| │ └───0003/ | |
| │ └───... | |
| └───train/ | |
| └───0001/ | |
| └───... | |
| ``` | |
| </details> | |
| ### CroCo-Stereo | |
| ##### Main model | |
| The main training of CroCo-Stereo was performed on a series of datasets, and it was used as it for Middlebury v3 benchmark. | |
| ``` | |
| # Download the model | |
| bash stereoflow/download_model.sh crocostereo.pth | |
| # Middlebury v3 submission | |
| python stereoflow/test.py --model stereoflow_models/crocostereo.pth --dataset "MdEval3('all_full')" --save submission --tile_overlap 0.9 | |
| # Training command that was used, using checkpoint-last.pth | |
| python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ | |
| # or it can be launched on multiple gpus (while maintaining the effective batch size), e.g. on 3 gpus: | |
| torchrun --nproc_per_node 3 stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 2 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ | |
| ``` | |
| For evaluation of validation set, we also provide the model trained on the `subtrain` subset of the training sets. | |
| ``` | |
| # Download the model | |
| bash stereoflow/download_model.sh crocostereo_subtrain.pth | |
| # Evaluation on validation sets | |
| python stereoflow/test.py --model stereoflow_models/crocostereo_subtrain.pth --dataset "MdEval3('subval_full')+ETH3DLowRes('subval')+SceneFlow('test_finalpass')+SceneFlow('test_cleanpass')" --save metrics --tile_overlap 0.9 | |
| # Training command that was used (same as above but on subtrain, using checkpoint-best.pth), can also be launched on multiple gpus | |
| python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('subtrain')+50*Md05('subtrain')+50*Md06('subtrain')+50*Md14('subtrain')+50*Md21('subtrain')+50*MdEval3('subtrain_full')+Booster('subtrain_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_subtrain/ | |
| ``` | |
| ##### Other models | |
| <details> | |
| <summary>Model for ETH3D</summary> | |
| The model used for the submission on ETH3D is trained with the same command but using an unbounded Laplacian loss. | |
| # Download the model | |
| bash stereoflow/download_model.sh crocostereo_eth3d.pth | |
| # ETH3D submission | |
| python stereoflow/test.py --model stereoflow_models/crocostereo_eth3d.pth --dataset "ETH3DLowRes('all')" --save submission --tile_overlap 0.9 | |
| # Training command that was used | |
| python -u stereoflow/train.py stereo --criterion "LaplacianLoss()" --tile_conf_mode conf_expbeta3 --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_eth3d/ | |
| </details> | |
| <details> | |
| <summary>Main model finetuned on Kitti</summary> | |
| # Download the model | |
| bash stereoflow/download_model.sh crocostereo_finetune_kitti.pth | |
| # Kitti submission | |
| python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.9 | |
| # Training that was used | |
| python -u stereoflow/train.py stereo --crop 352 1216 --criterion "LaplacianLossBounded2()" --dataset "Kitti12('train')+Kitti15('train')" --lr 3e-5 --batch_size 1 --accum_iter 6 --epochs 20 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_kitti/ --save_every 5 | |
| </details> | |
| <details> | |
| <summary>Main model finetuned on Spring</summary> | |
| # Download the model | |
| bash stereoflow/download_model.sh crocostereo_finetune_spring.pth | |
| # Spring submission | |
| python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 | |
| # Training command that was used | |
| python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "Spring('train')" --lr 3e-5 --batch_size 6 --epochs 8 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_spring/ | |
| </details> | |
| <details> | |
| <summary>Smaller models</summary> | |
| To train CroCo-Stereo with smaller CroCo pretrained models, simply replace the <code>--pretrained</code> argument. To download the smaller CroCo-Stereo models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use <code>bash stereoflow/download_model.sh crocostereo_subtrain_vitb_smalldecoder.pth</code>, and for the model with a ViT-Base encoder and a Base decoder, use <code>bash stereoflow/download_model.sh crocostereo_subtrain_vitb_basedecoder.pth</code>. | |
| </details> | |
| ### CroCo-Flow | |
| ##### Main model | |
| The main training of CroCo-Flow was performed on the FlyingThings, FlyingChairs, MPI-Sintel and TartanAir datasets. | |
| It was used for our submission to the MPI-Sintel benchmark. | |
| ``` | |
| # Download the model | |
| bash stereoflow/download_model.sh crocoflow.pth | |
| # Evaluation | |
| python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --save metrics --tile_overlap 0.9 | |
| # Sintel submission | |
| python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('test_allpass')" --save submission --tile_overlap 0.9 | |
| # Training command that was used, with checkpoint-best.pth | |
| python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "40*MPISintel('subtrain_cleanpass')+40*MPISintel('subtrain_finalpass')+4*FlyingThings('train_allpass')+4*FlyingChairs('train')+TartanAir('train')" --val_dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --lr 2e-5 --batch_size 8 --epochs 240 --img_per_epoch 30000 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocoflow/main/ | |
| ``` | |
| ##### Other models | |
| <details> | |
| <summary>Main model finetuned on Kitti</summary> | |
| # Download the model | |
| bash stereoflow/download_model.sh crocoflow_finetune_kitti.pth | |
| # Kitti submission | |
| python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.99 | |
| # Training that was used, with checkpoint-last.pth | |
| python -u stereoflow/train.py flow --crop 352 1216 --criterion "LaplacianLossBounded()" --dataset "Kitti15('train')+Kitti12('train')" --lr 2e-5 --batch_size 1 --accum_iter 8 --epochs 150 --save_every 5 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_kitti/ | |
| </details> | |
| <details> | |
| <summary>Main model finetuned on Spring</summary> | |
| # Download the model | |
| bash stereoflow/download_model.sh crocoflow_finetune_spring.pth | |
| # Spring submission | |
| python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 | |
| # Training command that was used, with checkpoint-last.pth | |
| python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "Spring('train')" --lr 2e-5 --batch_size 8 --epochs 12 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_spring/ | |
| </details> | |
| <details> | |
| <summary>Smaller models</summary> | |
| To train CroCo-Flow with smaller CroCo pretrained models, simply replace the <code>--pretrained</code> argument. To download the smaller CroCo-Flow models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use <code>bash stereoflow/download_model.sh crocoflow_vitb_smalldecoder.pth</code>, and for the model with a ViT-Base encoder and a Base decoder, use <code>bash stereoflow/download_model.sh crocoflow_vitb_basedecoder.pth</code>. | |
| </details> | |