Spaces:
Runtime error
Runtime error
update: api
Browse files- common/api.py +20 -6
- test_app_cli.py +45 -11
common/api.py
CHANGED
|
@@ -39,7 +39,15 @@ class ImageMatchingAPI(torch.nn.Module):
|
|
| 39 |
"name": "xfeat",
|
| 40 |
"max_keypoints": 1024,
|
| 41 |
"keypoint_threshold": 0.015,
|
| 42 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
},
|
| 44 |
"ransac": {
|
| 45 |
"enable": True,
|
|
@@ -75,12 +83,18 @@ class ImageMatchingAPI(torch.nn.Module):
|
|
| 75 |
"""
|
| 76 |
super().__init__()
|
| 77 |
self.device = device
|
| 78 |
-
self.conf = conf
|
| 79 |
-
**self.parse_match_config(self.default_conf),
|
| 80 |
-
**conf,
|
| 81 |
-
}
|
| 82 |
self._updata_config(detect_threshold, max_keypoints, match_threshold)
|
| 83 |
self._init_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
self.pred = None
|
| 85 |
|
| 86 |
def parse_match_config(self, conf):
|
|
@@ -123,7 +137,7 @@ class ImageMatchingAPI(torch.nn.Module):
|
|
| 123 |
|
| 124 |
def _init_models(self):
|
| 125 |
# initialize matcher
|
| 126 |
-
self.matcher = get_model(self.
|
| 127 |
# initialize extractor
|
| 128 |
if self.dense:
|
| 129 |
self.extractor = None
|
|
|
|
| 39 |
"name": "xfeat",
|
| 40 |
"max_keypoints": 1024,
|
| 41 |
"keypoint_threshold": 0.015,
|
| 42 |
+
},
|
| 43 |
+
"preprocessing": {
|
| 44 |
+
"grayscale": False,
|
| 45 |
+
"resize_max": 1600,
|
| 46 |
+
"force_resize": True,
|
| 47 |
+
"width": 640,
|
| 48 |
+
"height": 480,
|
| 49 |
+
"dfactor": 8,
|
| 50 |
+
},
|
| 51 |
},
|
| 52 |
"ransac": {
|
| 53 |
"enable": True,
|
|
|
|
| 83 |
"""
|
| 84 |
super().__init__()
|
| 85 |
self.device = device
|
| 86 |
+
self.conf = self.parse_match_config(conf)
|
|
|
|
|
|
|
|
|
|
| 87 |
self._updata_config(detect_threshold, max_keypoints, match_threshold)
|
| 88 |
self._init_models()
|
| 89 |
+
if device == "cuda":
|
| 90 |
+
memory_allocated = torch.cuda.memory_allocated(device)
|
| 91 |
+
memory_reserved = torch.cuda.memory_reserved(device)
|
| 92 |
+
logger.info(
|
| 93 |
+
f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB"
|
| 94 |
+
)
|
| 95 |
+
logger.info(
|
| 96 |
+
f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB"
|
| 97 |
+
)
|
| 98 |
self.pred = None
|
| 99 |
|
| 100 |
def parse_match_config(self, conf):
|
|
|
|
| 137 |
|
| 138 |
def _init_models(self):
|
| 139 |
# initialize matcher
|
| 140 |
+
self.matcher = get_model(self.match_conf)
|
| 141 |
# initialize extractor
|
| 142 |
if self.dense:
|
| 143 |
self.extractor = None
|
test_app_cli.py
CHANGED
|
@@ -39,23 +39,57 @@ def test_one():
|
|
| 39 |
img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg"
|
| 40 |
image0 = cv2.imread(str(img_path1))[:, :, ::-1] # RGB
|
| 41 |
image1 = cv2.imread(str(img_path2))[:, :, ::-1] # RGB
|
| 42 |
-
|
| 43 |
conf = {
|
|
|
|
| 44 |
"matcher": {
|
| 45 |
-
"output": "matches-omniglue",
|
| 46 |
"model": {
|
| 47 |
-
"name": "
|
| 48 |
"match_threshold": 0.2,
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
"
|
| 54 |
-
"
|
| 55 |
-
"
|
| 56 |
-
}
|
| 57 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
"dense": True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
}
|
| 60 |
api = ImageMatchingAPI(conf=conf, device=device)
|
| 61 |
api(image0, image1)
|
|
|
|
| 39 |
img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg"
|
| 40 |
image0 = cv2.imread(str(img_path1))[:, :, ::-1] # RGB
|
| 41 |
image1 = cv2.imread(str(img_path2))[:, :, ::-1] # RGB
|
| 42 |
+
# sparse
|
| 43 |
conf = {
|
| 44 |
+
"dense": False,
|
| 45 |
"matcher": {
|
|
|
|
| 46 |
"model": {
|
| 47 |
+
"name": "NN-mutual",
|
| 48 |
"match_threshold": 0.2,
|
| 49 |
+
}
|
| 50 |
+
},
|
| 51 |
+
"feature": {
|
| 52 |
+
"model": {
|
| 53 |
+
"name": "xfeat",
|
| 54 |
+
"max_keypoints": 1024,
|
| 55 |
+
"keypoint_threshold": 0.015,
|
| 56 |
+
}
|
| 57 |
},
|
| 58 |
+
"ransac": {
|
| 59 |
+
"enable": True,
|
| 60 |
+
"estimator": "poselib",
|
| 61 |
+
"geometry": "homography",
|
| 62 |
+
"method": "RANSAC",
|
| 63 |
+
"reproj_threshold": 3,
|
| 64 |
+
"confidence": 0.9999,
|
| 65 |
+
"max_iter": 10000,
|
| 66 |
+
},
|
| 67 |
+
}
|
| 68 |
+
api = ImageMatchingAPI(conf=conf, device=device)
|
| 69 |
+
api(image0, image1)
|
| 70 |
+
log_path = ROOT / "experiments" / "one"
|
| 71 |
+
log_path.mkdir(exist_ok=True, parents=True)
|
| 72 |
+
api.visualize(log_path=log_path)
|
| 73 |
+
|
| 74 |
+
# dense
|
| 75 |
+
conf = {
|
| 76 |
"dense": True,
|
| 77 |
+
"matcher": {
|
| 78 |
+
"model": {
|
| 79 |
+
"name": "loftr",
|
| 80 |
+
"match_threshold": 0.2,
|
| 81 |
+
}
|
| 82 |
+
},
|
| 83 |
+
"feature": {},
|
| 84 |
+
"ransac": {
|
| 85 |
+
"enable": True,
|
| 86 |
+
"estimator": "poselib",
|
| 87 |
+
"geometry": "homography",
|
| 88 |
+
"method": "RANSAC",
|
| 89 |
+
"reproj_threshold": 3,
|
| 90 |
+
"confidence": 0.9999,
|
| 91 |
+
"max_iter": 10000,
|
| 92 |
+
},
|
| 93 |
}
|
| 94 |
api = ImageMatchingAPI(conf=conf, device=device)
|
| 95 |
api(image0, image1)
|