Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- cli_all_app.py +388 -0
- cli_app.py +380 -0
- cli_batch_app.py +408 -0
cli_all_app.py
ADDED
|
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
python cli_all_app.py --input_img_path 战场原.webp --preset_traj "orbit" "spiral" "lemniscate" "zoom-in" "zoom-out" "dolly zoom-in" "dolly zoom-out" "move-forward" "move-backward" "move-up" "move-down" "move-left" "move-right" --output_dir 战场原
|
| 3 |
+
'''
|
| 4 |
+
|
| 5 |
+
import copy
|
| 6 |
+
import json
|
| 7 |
+
import os
|
| 8 |
+
import os.path as osp
|
| 9 |
+
import queue
|
| 10 |
+
import secrets
|
| 11 |
+
import threading
|
| 12 |
+
import time
|
| 13 |
+
from datetime import datetime
|
| 14 |
+
from glob import glob
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from typing import Literal, List
|
| 17 |
+
|
| 18 |
+
import imageio.v3 as iio
|
| 19 |
+
import numpy as np
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
import tyro
|
| 23 |
+
import viser
|
| 24 |
+
import viser.transforms as vt
|
| 25 |
+
from einops import rearrange
|
| 26 |
+
|
| 27 |
+
from seva.eval import (
|
| 28 |
+
IS_TORCH_NIGHTLY,
|
| 29 |
+
chunk_input_and_test,
|
| 30 |
+
create_transforms_simple,
|
| 31 |
+
infer_prior_stats,
|
| 32 |
+
run_one_scene,
|
| 33 |
+
transform_img_and_K,
|
| 34 |
+
)
|
| 35 |
+
from seva.geometry import (
|
| 36 |
+
DEFAULT_FOV_RAD,
|
| 37 |
+
get_default_intrinsics,
|
| 38 |
+
get_preset_pose_fov,
|
| 39 |
+
normalize_scene,
|
| 40 |
+
)
|
| 41 |
+
from seva.model import SGMWrapper
|
| 42 |
+
from seva.modules.autoencoder import AutoEncoder
|
| 43 |
+
from seva.modules.conditioner import CLIPConditioner
|
| 44 |
+
from seva.modules.preprocessor import Dust3rPipeline
|
| 45 |
+
from seva.sampling import DDPMDiscretization, DiscreteDenoiser
|
| 46 |
+
from seva.utils import load_model
|
| 47 |
+
|
| 48 |
+
device = "cuda:0"
|
| 49 |
+
|
| 50 |
+
# Constants.
|
| 51 |
+
WORK_DIR = "work_dirs/demo_gr"
|
| 52 |
+
MAX_SESSIONS = 1
|
| 53 |
+
|
| 54 |
+
if IS_TORCH_NIGHTLY:
|
| 55 |
+
COMPILE = True
|
| 56 |
+
os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1"
|
| 57 |
+
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
| 58 |
+
else:
|
| 59 |
+
COMPILE = False
|
| 60 |
+
|
| 61 |
+
# Shared global variables across sessions.
|
| 62 |
+
DUST3R = Dust3rPipeline(device=device) # type: ignore
|
| 63 |
+
MODEL = SGMWrapper(load_model(device="cpu", verbose=True).eval()).to(device)
|
| 64 |
+
AE = AutoEncoder(chunk_size=1).to(device)
|
| 65 |
+
CONDITIONER = CLIPConditioner().to(device)
|
| 66 |
+
DISCRETIZATION = DDPMDiscretization()
|
| 67 |
+
DENOISER = DiscreteDenoiser(discretization=DISCRETIZATION, num_idx=1000, device=device)
|
| 68 |
+
VERSION_DICT = {
|
| 69 |
+
"H": 576,
|
| 70 |
+
"W": 576,
|
| 71 |
+
"T": 21,
|
| 72 |
+
"C": 4,
|
| 73 |
+
"f": 8,
|
| 74 |
+
"options": {},
|
| 75 |
+
}
|
| 76 |
+
SERVERS = {}
|
| 77 |
+
ABORT_EVENTS = {}
|
| 78 |
+
|
| 79 |
+
if COMPILE:
|
| 80 |
+
MODEL = torch.compile(MODEL)
|
| 81 |
+
CONDITIONER = torch.compile(CONDITIONER)
|
| 82 |
+
AE = torch.compile(AE)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class SevaRenderer(object):
|
| 86 |
+
def __init__(self):
|
| 87 |
+
self.gui_state = None
|
| 88 |
+
|
| 89 |
+
def preprocess(self, input_img_path: str) -> dict:
|
| 90 |
+
# Simply hardcode these such that aspect ratio is always kept and
|
| 91 |
+
# shorter side is resized to 576. This is only to make GUI option fewer
|
| 92 |
+
# though, changing it still works.
|
| 93 |
+
shorter: int = 576
|
| 94 |
+
# Has to be 64 multiple for the network.
|
| 95 |
+
shorter = round(shorter / 64) * 64
|
| 96 |
+
|
| 97 |
+
# Assume `Basic` demo mode: just hardcode the camera parameters and ignore points.
|
| 98 |
+
input_imgs = torch.as_tensor(
|
| 99 |
+
iio.imread(input_img_path) / 255.0, dtype=torch.float32
|
| 100 |
+
)[None, ..., :3]
|
| 101 |
+
input_imgs = transform_img_and_K(
|
| 102 |
+
input_imgs.permute(0, 3, 1, 2),
|
| 103 |
+
shorter,
|
| 104 |
+
K=None,
|
| 105 |
+
size_stride=64,
|
| 106 |
+
)[0].permute(0, 2, 3, 1)
|
| 107 |
+
input_Ks = get_default_intrinsics(
|
| 108 |
+
aspect_ratio=input_imgs.shape[2] / input_imgs.shape[1]
|
| 109 |
+
)
|
| 110 |
+
input_c2ws = torch.eye(4)[None]
|
| 111 |
+
# Simulate a small time interval such that gradio can update
|
| 112 |
+
# propgress properly.
|
| 113 |
+
time.sleep(0.1)
|
| 114 |
+
return {
|
| 115 |
+
"input_imgs": input_imgs,
|
| 116 |
+
"input_Ks": input_Ks,
|
| 117 |
+
"input_c2ws": input_c2ws,
|
| 118 |
+
"input_wh": (input_imgs.shape[2], input_imgs.shape[1]),
|
| 119 |
+
"points": [np.zeros((0, 3))],
|
| 120 |
+
"point_colors": [np.zeros((0, 3))],
|
| 121 |
+
"scene_scale": 1.0,
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
def render(
|
| 125 |
+
self,
|
| 126 |
+
preprocessed: dict,
|
| 127 |
+
seed: int,
|
| 128 |
+
chunk_strategy: str,
|
| 129 |
+
cfg: float,
|
| 130 |
+
preset_traj: Literal[
|
| 131 |
+
"orbit",
|
| 132 |
+
"spiral",
|
| 133 |
+
"lemniscate",
|
| 134 |
+
"zoom-in",
|
| 135 |
+
"zoom-out",
|
| 136 |
+
"dolly zoom-in",
|
| 137 |
+
"dolly zoom-out",
|
| 138 |
+
"move-forward",
|
| 139 |
+
"move-backward",
|
| 140 |
+
"move-up",
|
| 141 |
+
"move-down",
|
| 142 |
+
"move-left",
|
| 143 |
+
"move-right",
|
| 144 |
+
],
|
| 145 |
+
num_frames: int,
|
| 146 |
+
zoom_factor: float | None,
|
| 147 |
+
camera_scale: float,
|
| 148 |
+
output_dir: str,
|
| 149 |
+
) -> str:
|
| 150 |
+
# Generate a unique render name based on the input image filename and preset_traj
|
| 151 |
+
input_img_name = osp.splitext(osp.basename(preprocessed["input_img_path"]))[0]
|
| 152 |
+
render_name = f"{input_img_name}_{preset_traj}"
|
| 153 |
+
render_dir = osp.join(output_dir, render_name)
|
| 154 |
+
|
| 155 |
+
input_imgs, input_Ks, input_c2ws, (W, H) = (
|
| 156 |
+
preprocessed["input_imgs"],
|
| 157 |
+
preprocessed["input_Ks"],
|
| 158 |
+
preprocessed["input_c2ws"],
|
| 159 |
+
preprocessed["input_wh"],
|
| 160 |
+
)
|
| 161 |
+
num_inputs = len(input_imgs)
|
| 162 |
+
assert num_inputs == 1
|
| 163 |
+
input_c2ws = torch.eye(4)[None].to(dtype=input_c2ws.dtype)
|
| 164 |
+
target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_preset(
|
| 165 |
+
preprocessed, preset_traj, num_frames, zoom_factor
|
| 166 |
+
)
|
| 167 |
+
all_c2ws = torch.cat([input_c2ws, target_c2ws], 0)
|
| 168 |
+
all_Ks = (
|
| 169 |
+
torch.cat([input_Ks, target_Ks], 0)
|
| 170 |
+
* input_Ks.new_tensor([W, H, 1])[:, None]
|
| 171 |
+
)
|
| 172 |
+
num_targets = len(target_c2ws)
|
| 173 |
+
input_indices = list(range(num_inputs))
|
| 174 |
+
target_indices = np.arange(num_inputs, num_inputs + num_targets).tolist()
|
| 175 |
+
# Get anchor cameras.
|
| 176 |
+
T = VERSION_DICT["T"]
|
| 177 |
+
version_dict = copy.deepcopy(VERSION_DICT)
|
| 178 |
+
num_anchors = infer_prior_stats(
|
| 179 |
+
T,
|
| 180 |
+
num_inputs,
|
| 181 |
+
num_total_frames=num_targets,
|
| 182 |
+
version_dict=version_dict,
|
| 183 |
+
)
|
| 184 |
+
# infer_prior_stats modifies T in-place.
|
| 185 |
+
T = version_dict["T"]
|
| 186 |
+
assert isinstance(num_anchors, int)
|
| 187 |
+
anchor_indices = np.linspace(
|
| 188 |
+
num_inputs,
|
| 189 |
+
num_inputs + num_targets - 1,
|
| 190 |
+
num_anchors,
|
| 191 |
+
).tolist()
|
| 192 |
+
anchor_c2ws = all_c2ws[[round(ind) for ind in anchor_indices]]
|
| 193 |
+
anchor_Ks = all_Ks[[round(ind) for ind in anchor_indices]]
|
| 194 |
+
# Create image conditioning.
|
| 195 |
+
all_imgs_np = (
|
| 196 |
+
F.pad(input_imgs, (0, 0, 0, 0, 0, 0, 0, num_targets), value=0.0).numpy()
|
| 197 |
+
* 255.0
|
| 198 |
+
).astype(np.uint8)
|
| 199 |
+
image_cond = {
|
| 200 |
+
"img": all_imgs_np,
|
| 201 |
+
"input_indices": input_indices,
|
| 202 |
+
"prior_indices": anchor_indices,
|
| 203 |
+
}
|
| 204 |
+
# Create camera conditioning (K is unnormalized).
|
| 205 |
+
camera_cond = {
|
| 206 |
+
"c2w": all_c2ws,
|
| 207 |
+
"K": all_Ks,
|
| 208 |
+
"input_indices": list(range(num_inputs + num_targets)),
|
| 209 |
+
}
|
| 210 |
+
# Run rendering.
|
| 211 |
+
num_steps = 50
|
| 212 |
+
options_ori = VERSION_DICT["options"]
|
| 213 |
+
options = copy.deepcopy(options_ori)
|
| 214 |
+
options["chunk_strategy"] = chunk_strategy
|
| 215 |
+
options["video_save_fps"] = 30.0
|
| 216 |
+
options["beta_linear_start"] = 5e-6
|
| 217 |
+
options["log_snr_shift"] = 2.4
|
| 218 |
+
options["guider_types"] = [1, 2]
|
| 219 |
+
options["cfg"] = [
|
| 220 |
+
float(cfg),
|
| 221 |
+
3.0 if num_inputs >= 9 else 2.0,
|
| 222 |
+
] # We define semi-dense-view regime to have 9 input views.
|
| 223 |
+
options["camera_scale"] = camera_scale
|
| 224 |
+
options["num_steps"] = num_steps
|
| 225 |
+
options["cfg_min"] = 1.2
|
| 226 |
+
options["encoding_t"] = 1
|
| 227 |
+
options["decoding_t"] = 1
|
| 228 |
+
task = "img2trajvid"
|
| 229 |
+
# Get number of first pass chunks.
|
| 230 |
+
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T
|
| 231 |
+
chunk_strategy_first_pass = options.get(
|
| 232 |
+
"chunk_strategy_first_pass", "gt-nearest"
|
| 233 |
+
)
|
| 234 |
+
num_chunks_0 = len(
|
| 235 |
+
chunk_input_and_test(
|
| 236 |
+
T_first_pass,
|
| 237 |
+
input_c2ws,
|
| 238 |
+
anchor_c2ws,
|
| 239 |
+
input_indices,
|
| 240 |
+
image_cond["prior_indices"],
|
| 241 |
+
options={**options, "sampler_verbose": False},
|
| 242 |
+
task=task,
|
| 243 |
+
chunk_strategy=chunk_strategy_first_pass,
|
| 244 |
+
gt_input_inds=list(range(input_c2ws.shape[0])),
|
| 245 |
+
)[1]
|
| 246 |
+
)
|
| 247 |
+
# Get number of second pass chunks.
|
| 248 |
+
anchor_argsort = np.argsort(input_indices + anchor_indices).tolist()
|
| 249 |
+
anchor_indices = np.array(input_indices + anchor_indices)[
|
| 250 |
+
anchor_argsort
|
| 251 |
+
].tolist()
|
| 252 |
+
gt_input_inds = [anchor_argsort.index(i) for i in range(input_c2ws.shape[0])]
|
| 253 |
+
anchor_c2ws_second_pass = torch.cat([input_c2ws, anchor_c2ws], dim=0)[
|
| 254 |
+
anchor_argsort
|
| 255 |
+
]
|
| 256 |
+
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T
|
| 257 |
+
chunk_strategy = options.get("chunk_strategy", "nearest")
|
| 258 |
+
num_chunks_1 = len(
|
| 259 |
+
chunk_input_and_test(
|
| 260 |
+
T_second_pass,
|
| 261 |
+
anchor_c2ws_second_pass,
|
| 262 |
+
target_c2ws,
|
| 263 |
+
anchor_indices,
|
| 264 |
+
target_indices,
|
| 265 |
+
options={**options, "sampler_verbose": False},
|
| 266 |
+
task=task,
|
| 267 |
+
chunk_strategy=chunk_strategy,
|
| 268 |
+
gt_input_inds=gt_input_inds,
|
| 269 |
+
)[1]
|
| 270 |
+
)
|
| 271 |
+
video_path_generator = run_one_scene(
|
| 272 |
+
task=task,
|
| 273 |
+
version_dict={
|
| 274 |
+
"H": H,
|
| 275 |
+
"W": W,
|
| 276 |
+
"T": T,
|
| 277 |
+
"C": VERSION_DICT["C"],
|
| 278 |
+
"f": VERSION_DICT["f"],
|
| 279 |
+
"options": options,
|
| 280 |
+
},
|
| 281 |
+
model=MODEL,
|
| 282 |
+
ae=AE,
|
| 283 |
+
conditioner=CONDITIONER,
|
| 284 |
+
denoiser=DENOISER,
|
| 285 |
+
image_cond=image_cond,
|
| 286 |
+
camera_cond=camera_cond,
|
| 287 |
+
save_path=render_dir,
|
| 288 |
+
use_traj_prior=True,
|
| 289 |
+
traj_prior_c2ws=anchor_c2ws,
|
| 290 |
+
traj_prior_Ks=anchor_Ks,
|
| 291 |
+
seed=seed,
|
| 292 |
+
gradio=True,
|
| 293 |
+
)
|
| 294 |
+
for video_path in video_path_generator:
|
| 295 |
+
return video_path
|
| 296 |
+
return ""
|
| 297 |
+
|
| 298 |
+
def get_target_c2ws_and_Ks_from_preset(
|
| 299 |
+
self,
|
| 300 |
+
preprocessed: dict,
|
| 301 |
+
preset_traj: Literal[
|
| 302 |
+
"orbit",
|
| 303 |
+
"spiral",
|
| 304 |
+
"lemniscate",
|
| 305 |
+
"zoom-in",
|
| 306 |
+
"zoom-out",
|
| 307 |
+
"dolly zoom-in",
|
| 308 |
+
"dolly zoom-out",
|
| 309 |
+
"move-forward",
|
| 310 |
+
"move-backward",
|
| 311 |
+
"move-up",
|
| 312 |
+
"move-down",
|
| 313 |
+
"move-left",
|
| 314 |
+
"move-right",
|
| 315 |
+
],
|
| 316 |
+
num_frames: int,
|
| 317 |
+
zoom_factor: float | None,
|
| 318 |
+
):
|
| 319 |
+
img_wh = preprocessed["input_wh"]
|
| 320 |
+
start_c2w = preprocessed["input_c2ws"][0]
|
| 321 |
+
start_w2c = torch.linalg.inv(start_c2w)
|
| 322 |
+
look_at = torch.tensor([0, 0, 10])
|
| 323 |
+
start_fov = DEFAULT_FOV_RAD
|
| 324 |
+
target_c2ws, target_fovs = get_preset_pose_fov(
|
| 325 |
+
preset_traj,
|
| 326 |
+
num_frames,
|
| 327 |
+
start_w2c,
|
| 328 |
+
look_at,
|
| 329 |
+
-start_c2w[:3, 1],
|
| 330 |
+
start_fov,
|
| 331 |
+
spiral_radii=[1.0, 1.0, 0.5],
|
| 332 |
+
zoom_factor=zoom_factor,
|
| 333 |
+
)
|
| 334 |
+
target_c2ws = torch.as_tensor(target_c2ws)
|
| 335 |
+
target_fovs = torch.as_tensor(target_fovs)
|
| 336 |
+
target_Ks = get_default_intrinsics(
|
| 337 |
+
target_fovs, # type: ignore
|
| 338 |
+
aspect_ratio=img_wh[0] / img_wh[1],
|
| 339 |
+
)
|
| 340 |
+
return target_c2ws, target_Ks
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
def main(
|
| 344 |
+
input_img_path: str,
|
| 345 |
+
preset_traj: List[Literal[
|
| 346 |
+
"orbit",
|
| 347 |
+
"spiral",
|
| 348 |
+
"lemniscate",
|
| 349 |
+
"zoom-in",
|
| 350 |
+
"zoom-out",
|
| 351 |
+
"dolly zoom-in",
|
| 352 |
+
"dolly zoom-out",
|
| 353 |
+
"move-forward",
|
| 354 |
+
"move-backward",
|
| 355 |
+
"move-up",
|
| 356 |
+
"move-down",
|
| 357 |
+
"move-left",
|
| 358 |
+
"move-right",
|
| 359 |
+
]],
|
| 360 |
+
num_frames: int = 80,
|
| 361 |
+
zoom_factor: float | None = None,
|
| 362 |
+
seed: int = 23,
|
| 363 |
+
chunk_strategy: str = "interp",
|
| 364 |
+
cfg: float = 4.0,
|
| 365 |
+
camera_scale: float = 2.0,
|
| 366 |
+
output_dir: str = WORK_DIR,
|
| 367 |
+
):
|
| 368 |
+
renderer = SevaRenderer()
|
| 369 |
+
preprocessed = renderer.preprocess(input_img_path)
|
| 370 |
+
preprocessed["input_img_path"] = input_img_path # Add input_img_path to preprocessed dict
|
| 371 |
+
|
| 372 |
+
for traj in preset_traj:
|
| 373 |
+
video_path = renderer.render(
|
| 374 |
+
preprocessed,
|
| 375 |
+
seed,
|
| 376 |
+
chunk_strategy,
|
| 377 |
+
cfg,
|
| 378 |
+
traj,
|
| 379 |
+
num_frames,
|
| 380 |
+
zoom_factor,
|
| 381 |
+
camera_scale,
|
| 382 |
+
output_dir,
|
| 383 |
+
)
|
| 384 |
+
print(f"Rendered video saved to: {video_path}")
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
if __name__ == "__main__":
|
| 388 |
+
tyro.cli(main)
|
cli_app.py
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
python cli_app.py --input_img_path 战场原.webp --preset_traj orbit --num_frames 80 --seed 23 --chunk_strategy interp --cfg 4.0 --camera_scale 2.0
|
| 3 |
+
'''
|
| 4 |
+
|
| 5 |
+
import copy
|
| 6 |
+
import json
|
| 7 |
+
import os
|
| 8 |
+
import os.path as osp
|
| 9 |
+
import queue
|
| 10 |
+
import secrets
|
| 11 |
+
import threading
|
| 12 |
+
import time
|
| 13 |
+
from datetime import datetime
|
| 14 |
+
from glob import glob
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from typing import Literal
|
| 17 |
+
|
| 18 |
+
import imageio.v3 as iio
|
| 19 |
+
import numpy as np
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
import tyro
|
| 23 |
+
import viser
|
| 24 |
+
import viser.transforms as vt
|
| 25 |
+
from einops import rearrange
|
| 26 |
+
|
| 27 |
+
from seva.eval import (
|
| 28 |
+
IS_TORCH_NIGHTLY,
|
| 29 |
+
chunk_input_and_test,
|
| 30 |
+
create_transforms_simple,
|
| 31 |
+
infer_prior_stats,
|
| 32 |
+
run_one_scene,
|
| 33 |
+
transform_img_and_K,
|
| 34 |
+
)
|
| 35 |
+
from seva.geometry import (
|
| 36 |
+
DEFAULT_FOV_RAD,
|
| 37 |
+
get_default_intrinsics,
|
| 38 |
+
get_preset_pose_fov,
|
| 39 |
+
normalize_scene,
|
| 40 |
+
)
|
| 41 |
+
from seva.model import SGMWrapper
|
| 42 |
+
from seva.modules.autoencoder import AutoEncoder
|
| 43 |
+
from seva.modules.conditioner import CLIPConditioner
|
| 44 |
+
from seva.modules.preprocessor import Dust3rPipeline
|
| 45 |
+
from seva.sampling import DDPMDiscretization, DiscreteDenoiser
|
| 46 |
+
from seva.utils import load_model
|
| 47 |
+
|
| 48 |
+
device = "cuda:0"
|
| 49 |
+
|
| 50 |
+
# Constants.
|
| 51 |
+
WORK_DIR = "work_dirs/demo_gr"
|
| 52 |
+
MAX_SESSIONS = 1
|
| 53 |
+
|
| 54 |
+
if IS_TORCH_NIGHTLY:
|
| 55 |
+
COMPILE = True
|
| 56 |
+
os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1"
|
| 57 |
+
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
| 58 |
+
else:
|
| 59 |
+
COMPILE = False
|
| 60 |
+
|
| 61 |
+
# Shared global variables across sessions.
|
| 62 |
+
DUST3R = Dust3rPipeline(device=device) # type: ignore
|
| 63 |
+
MODEL = SGMWrapper(load_model(device="cpu", verbose=True).eval()).to(device)
|
| 64 |
+
AE = AutoEncoder(chunk_size=1).to(device)
|
| 65 |
+
CONDITIONER = CLIPConditioner().to(device)
|
| 66 |
+
DISCRETIZATION = DDPMDiscretization()
|
| 67 |
+
DENOISER = DiscreteDenoiser(discretization=DISCRETIZATION, num_idx=1000, device=device)
|
| 68 |
+
VERSION_DICT = {
|
| 69 |
+
"H": 576,
|
| 70 |
+
"W": 576,
|
| 71 |
+
"T": 21,
|
| 72 |
+
"C": 4,
|
| 73 |
+
"f": 8,
|
| 74 |
+
"options": {},
|
| 75 |
+
}
|
| 76 |
+
SERVERS = {}
|
| 77 |
+
ABORT_EVENTS = {}
|
| 78 |
+
|
| 79 |
+
if COMPILE:
|
| 80 |
+
MODEL = torch.compile(MODEL)
|
| 81 |
+
CONDITIONER = torch.compile(CONDITIONER)
|
| 82 |
+
AE = torch.compile(AE)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class SevaRenderer(object):
|
| 86 |
+
def __init__(self):
|
| 87 |
+
self.gui_state = None
|
| 88 |
+
|
| 89 |
+
def preprocess(self, input_img_path: str) -> dict:
|
| 90 |
+
# Simply hardcode these such that aspect ratio is always kept and
|
| 91 |
+
# shorter side is resized to 576. This is only to make GUI option fewer
|
| 92 |
+
# though, changing it still works.
|
| 93 |
+
shorter: int = 576
|
| 94 |
+
# Has to be 64 multiple for the network.
|
| 95 |
+
shorter = round(shorter / 64) * 64
|
| 96 |
+
|
| 97 |
+
# Assume `Basic` demo mode: just hardcode the camera parameters and ignore points.
|
| 98 |
+
input_imgs = torch.as_tensor(
|
| 99 |
+
iio.imread(input_img_path) / 255.0, dtype=torch.float32
|
| 100 |
+
)[None, ..., :3]
|
| 101 |
+
input_imgs = transform_img_and_K(
|
| 102 |
+
input_imgs.permute(0, 3, 1, 2),
|
| 103 |
+
shorter,
|
| 104 |
+
K=None,
|
| 105 |
+
size_stride=64,
|
| 106 |
+
)[0].permute(0, 2, 3, 1)
|
| 107 |
+
input_Ks = get_default_intrinsics(
|
| 108 |
+
aspect_ratio=input_imgs.shape[2] / input_imgs.shape[1]
|
| 109 |
+
)
|
| 110 |
+
input_c2ws = torch.eye(4)[None]
|
| 111 |
+
# Simulate a small time interval such that gradio can update
|
| 112 |
+
# propgress properly.
|
| 113 |
+
time.sleep(0.1)
|
| 114 |
+
return {
|
| 115 |
+
"input_imgs": input_imgs,
|
| 116 |
+
"input_Ks": input_Ks,
|
| 117 |
+
"input_c2ws": input_c2ws,
|
| 118 |
+
"input_wh": (input_imgs.shape[2], input_imgs.shape[1]),
|
| 119 |
+
"points": [np.zeros((0, 3))],
|
| 120 |
+
"point_colors": [np.zeros((0, 3))],
|
| 121 |
+
"scene_scale": 1.0,
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
def render(
|
| 125 |
+
self,
|
| 126 |
+
preprocessed: dict,
|
| 127 |
+
seed: int,
|
| 128 |
+
chunk_strategy: str,
|
| 129 |
+
cfg: float,
|
| 130 |
+
preset_traj: Literal[
|
| 131 |
+
"orbit",
|
| 132 |
+
"spiral",
|
| 133 |
+
"lemniscate",
|
| 134 |
+
"zoom-in",
|
| 135 |
+
"zoom-out",
|
| 136 |
+
"dolly zoom-in",
|
| 137 |
+
"dolly zoom-out",
|
| 138 |
+
"move-forward",
|
| 139 |
+
"move-backward",
|
| 140 |
+
"move-up",
|
| 141 |
+
"move-down",
|
| 142 |
+
"move-left",
|
| 143 |
+
"move-right",
|
| 144 |
+
],
|
| 145 |
+
num_frames: int,
|
| 146 |
+
zoom_factor: float | None,
|
| 147 |
+
camera_scale: float,
|
| 148 |
+
) -> str:
|
| 149 |
+
render_name = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 150 |
+
render_dir = osp.join(WORK_DIR, render_name)
|
| 151 |
+
|
| 152 |
+
input_imgs, input_Ks, input_c2ws, (W, H) = (
|
| 153 |
+
preprocessed["input_imgs"],
|
| 154 |
+
preprocessed["input_Ks"],
|
| 155 |
+
preprocessed["input_c2ws"],
|
| 156 |
+
preprocessed["input_wh"],
|
| 157 |
+
)
|
| 158 |
+
num_inputs = len(input_imgs)
|
| 159 |
+
assert num_inputs == 1
|
| 160 |
+
input_c2ws = torch.eye(4)[None].to(dtype=input_c2ws.dtype)
|
| 161 |
+
target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_preset(
|
| 162 |
+
preprocessed, preset_traj, num_frames, zoom_factor
|
| 163 |
+
)
|
| 164 |
+
all_c2ws = torch.cat([input_c2ws, target_c2ws], 0)
|
| 165 |
+
all_Ks = (
|
| 166 |
+
torch.cat([input_Ks, target_Ks], 0)
|
| 167 |
+
* input_Ks.new_tensor([W, H, 1])[:, None]
|
| 168 |
+
)
|
| 169 |
+
num_targets = len(target_c2ws)
|
| 170 |
+
input_indices = list(range(num_inputs))
|
| 171 |
+
target_indices = np.arange(num_inputs, num_inputs + num_targets).tolist()
|
| 172 |
+
# Get anchor cameras.
|
| 173 |
+
T = VERSION_DICT["T"]
|
| 174 |
+
version_dict = copy.deepcopy(VERSION_DICT)
|
| 175 |
+
num_anchors = infer_prior_stats(
|
| 176 |
+
T,
|
| 177 |
+
num_inputs,
|
| 178 |
+
num_total_frames=num_targets,
|
| 179 |
+
version_dict=version_dict,
|
| 180 |
+
)
|
| 181 |
+
# infer_prior_stats modifies T in-place.
|
| 182 |
+
T = version_dict["T"]
|
| 183 |
+
assert isinstance(num_anchors, int)
|
| 184 |
+
anchor_indices = np.linspace(
|
| 185 |
+
num_inputs,
|
| 186 |
+
num_inputs + num_targets - 1,
|
| 187 |
+
num_anchors,
|
| 188 |
+
).tolist()
|
| 189 |
+
anchor_c2ws = all_c2ws[[round(ind) for ind in anchor_indices]]
|
| 190 |
+
anchor_Ks = all_Ks[[round(ind) for ind in anchor_indices]]
|
| 191 |
+
# Create image conditioning.
|
| 192 |
+
all_imgs_np = (
|
| 193 |
+
F.pad(input_imgs, (0, 0, 0, 0, 0, 0, 0, num_targets), value=0.0).numpy()
|
| 194 |
+
* 255.0
|
| 195 |
+
).astype(np.uint8)
|
| 196 |
+
image_cond = {
|
| 197 |
+
"img": all_imgs_np,
|
| 198 |
+
"input_indices": input_indices,
|
| 199 |
+
"prior_indices": anchor_indices,
|
| 200 |
+
}
|
| 201 |
+
# Create camera conditioning (K is unnormalized).
|
| 202 |
+
camera_cond = {
|
| 203 |
+
"c2w": all_c2ws,
|
| 204 |
+
"K": all_Ks,
|
| 205 |
+
"input_indices": list(range(num_inputs + num_targets)),
|
| 206 |
+
}
|
| 207 |
+
# Run rendering.
|
| 208 |
+
num_steps = 50
|
| 209 |
+
options_ori = VERSION_DICT["options"]
|
| 210 |
+
options = copy.deepcopy(options_ori)
|
| 211 |
+
options["chunk_strategy"] = chunk_strategy
|
| 212 |
+
options["video_save_fps"] = 30.0
|
| 213 |
+
options["beta_linear_start"] = 5e-6
|
| 214 |
+
options["log_snr_shift"] = 2.4
|
| 215 |
+
options["guider_types"] = [1, 2]
|
| 216 |
+
options["cfg"] = [
|
| 217 |
+
float(cfg),
|
| 218 |
+
3.0 if num_inputs >= 9 else 2.0,
|
| 219 |
+
] # We define semi-dense-view regime to have 9 input views.
|
| 220 |
+
options["camera_scale"] = camera_scale
|
| 221 |
+
options["num_steps"] = num_steps
|
| 222 |
+
options["cfg_min"] = 1.2
|
| 223 |
+
options["encoding_t"] = 1
|
| 224 |
+
options["decoding_t"] = 1
|
| 225 |
+
task = "img2trajvid"
|
| 226 |
+
# Get number of first pass chunks.
|
| 227 |
+
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T
|
| 228 |
+
chunk_strategy_first_pass = options.get(
|
| 229 |
+
"chunk_strategy_first_pass", "gt-nearest"
|
| 230 |
+
)
|
| 231 |
+
num_chunks_0 = len(
|
| 232 |
+
chunk_input_and_test(
|
| 233 |
+
T_first_pass,
|
| 234 |
+
input_c2ws,
|
| 235 |
+
anchor_c2ws,
|
| 236 |
+
input_indices,
|
| 237 |
+
image_cond["prior_indices"],
|
| 238 |
+
options={**options, "sampler_verbose": False},
|
| 239 |
+
task=task,
|
| 240 |
+
chunk_strategy=chunk_strategy_first_pass,
|
| 241 |
+
gt_input_inds=list(range(input_c2ws.shape[0])),
|
| 242 |
+
)[1]
|
| 243 |
+
)
|
| 244 |
+
# Get number of second pass chunks.
|
| 245 |
+
anchor_argsort = np.argsort(input_indices + anchor_indices).tolist()
|
| 246 |
+
anchor_indices = np.array(input_indices + anchor_indices)[
|
| 247 |
+
anchor_argsort
|
| 248 |
+
].tolist()
|
| 249 |
+
gt_input_inds = [anchor_argsort.index(i) for i in range(input_c2ws.shape[0])]
|
| 250 |
+
anchor_c2ws_second_pass = torch.cat([input_c2ws, anchor_c2ws], dim=0)[
|
| 251 |
+
anchor_argsort
|
| 252 |
+
]
|
| 253 |
+
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T
|
| 254 |
+
chunk_strategy = options.get("chunk_strategy", "nearest")
|
| 255 |
+
num_chunks_1 = len(
|
| 256 |
+
chunk_input_and_test(
|
| 257 |
+
T_second_pass,
|
| 258 |
+
anchor_c2ws_second_pass,
|
| 259 |
+
target_c2ws,
|
| 260 |
+
anchor_indices,
|
| 261 |
+
target_indices,
|
| 262 |
+
options={**options, "sampler_verbose": False},
|
| 263 |
+
task=task,
|
| 264 |
+
chunk_strategy=chunk_strategy,
|
| 265 |
+
gt_input_inds=gt_input_inds,
|
| 266 |
+
)[1]
|
| 267 |
+
)
|
| 268 |
+
video_path_generator = run_one_scene(
|
| 269 |
+
task=task,
|
| 270 |
+
version_dict={
|
| 271 |
+
"H": H,
|
| 272 |
+
"W": W,
|
| 273 |
+
"T": T,
|
| 274 |
+
"C": VERSION_DICT["C"],
|
| 275 |
+
"f": VERSION_DICT["f"],
|
| 276 |
+
"options": options,
|
| 277 |
+
},
|
| 278 |
+
model=MODEL,
|
| 279 |
+
ae=AE,
|
| 280 |
+
conditioner=CONDITIONER,
|
| 281 |
+
denoiser=DENOISER,
|
| 282 |
+
image_cond=image_cond,
|
| 283 |
+
camera_cond=camera_cond,
|
| 284 |
+
save_path=render_dir,
|
| 285 |
+
use_traj_prior=True,
|
| 286 |
+
traj_prior_c2ws=anchor_c2ws,
|
| 287 |
+
traj_prior_Ks=anchor_Ks,
|
| 288 |
+
seed=seed,
|
| 289 |
+
gradio=True,
|
| 290 |
+
)
|
| 291 |
+
for video_path in video_path_generator:
|
| 292 |
+
return video_path
|
| 293 |
+
return ""
|
| 294 |
+
|
| 295 |
+
def get_target_c2ws_and_Ks_from_preset(
|
| 296 |
+
self,
|
| 297 |
+
preprocessed: dict,
|
| 298 |
+
preset_traj: Literal[
|
| 299 |
+
"orbit",
|
| 300 |
+
"spiral",
|
| 301 |
+
"lemniscate",
|
| 302 |
+
"zoom-in",
|
| 303 |
+
"zoom-out",
|
| 304 |
+
"dolly zoom-in",
|
| 305 |
+
"dolly zoom-out",
|
| 306 |
+
"move-forward",
|
| 307 |
+
"move-backward",
|
| 308 |
+
"move-up",
|
| 309 |
+
"move-down",
|
| 310 |
+
"move-left",
|
| 311 |
+
"move-right",
|
| 312 |
+
],
|
| 313 |
+
num_frames: int,
|
| 314 |
+
zoom_factor: float | None,
|
| 315 |
+
):
|
| 316 |
+
img_wh = preprocessed["input_wh"]
|
| 317 |
+
start_c2w = preprocessed["input_c2ws"][0]
|
| 318 |
+
start_w2c = torch.linalg.inv(start_c2w)
|
| 319 |
+
look_at = torch.tensor([0, 0, 10])
|
| 320 |
+
start_fov = DEFAULT_FOV_RAD
|
| 321 |
+
target_c2ws, target_fovs = get_preset_pose_fov(
|
| 322 |
+
preset_traj,
|
| 323 |
+
num_frames,
|
| 324 |
+
start_w2c,
|
| 325 |
+
look_at,
|
| 326 |
+
-start_c2w[:3, 1],
|
| 327 |
+
start_fov,
|
| 328 |
+
spiral_radii=[1.0, 1.0, 0.5],
|
| 329 |
+
zoom_factor=zoom_factor,
|
| 330 |
+
)
|
| 331 |
+
target_c2ws = torch.as_tensor(target_c2ws)
|
| 332 |
+
target_fovs = torch.as_tensor(target_fovs)
|
| 333 |
+
target_Ks = get_default_intrinsics(
|
| 334 |
+
target_fovs, # type: ignore
|
| 335 |
+
aspect_ratio=img_wh[0] / img_wh[1],
|
| 336 |
+
)
|
| 337 |
+
return target_c2ws, target_Ks
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
def main(
|
| 341 |
+
input_img_path: str,
|
| 342 |
+
preset_traj: Literal[
|
| 343 |
+
"orbit",
|
| 344 |
+
"spiral",
|
| 345 |
+
"lemniscate",
|
| 346 |
+
"zoom-in",
|
| 347 |
+
"zoom-out",
|
| 348 |
+
"dolly zoom-in",
|
| 349 |
+
"dolly zoom-out",
|
| 350 |
+
"move-forward",
|
| 351 |
+
"move-backward",
|
| 352 |
+
"move-up",
|
| 353 |
+
"move-down",
|
| 354 |
+
"move-left",
|
| 355 |
+
"move-right",
|
| 356 |
+
] = "orbit",
|
| 357 |
+
num_frames: int = 80,
|
| 358 |
+
zoom_factor: float | None = None,
|
| 359 |
+
seed: int = 23,
|
| 360 |
+
chunk_strategy: str = "interp",
|
| 361 |
+
cfg: float = 4.0,
|
| 362 |
+
camera_scale: float = 2.0,
|
| 363 |
+
):
|
| 364 |
+
renderer = SevaRenderer()
|
| 365 |
+
preprocessed = renderer.preprocess(input_img_path)
|
| 366 |
+
video_path = renderer.render(
|
| 367 |
+
preprocessed,
|
| 368 |
+
seed,
|
| 369 |
+
chunk_strategy,
|
| 370 |
+
cfg,
|
| 371 |
+
preset_traj,
|
| 372 |
+
num_frames,
|
| 373 |
+
zoom_factor,
|
| 374 |
+
camera_scale,
|
| 375 |
+
)
|
| 376 |
+
print(f"Rendered video saved to: {video_path}")
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
if __name__ == "__main__":
|
| 380 |
+
tyro.cli(main)
|
cli_batch_app.py
ADDED
|
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
python cli_batch_app.py --input_path imgs --preset_traj "orbit" "spiral" "lemniscate" "zoom-in" "zoom-out" "dolly zoom-in" "dolly zoom-out" "move-forward" "move-backward" "move-up" "move-down" "move-left" "move-right" --output_dir 相机路径
|
| 3 |
+
|
| 4 |
+
python cli_batch_app.py --input_path imgs --preset_traj "orbit" "spiral" "lemniscate" --output_dir 相机路径
|
| 5 |
+
|
| 6 |
+
#### 人物 或立体主体场景
|
| 7 |
+
"orbit"
|
| 8 |
+
|
| 9 |
+
#### 平面风景场景
|
| 10 |
+
"spiral" "lemniscate"
|
| 11 |
+
'''
|
| 12 |
+
|
| 13 |
+
import copy
|
| 14 |
+
import json
|
| 15 |
+
import os
|
| 16 |
+
import os.path as osp
|
| 17 |
+
import queue
|
| 18 |
+
import secrets
|
| 19 |
+
import threading
|
| 20 |
+
import time
|
| 21 |
+
from datetime import datetime
|
| 22 |
+
from glob import glob
|
| 23 |
+
from pathlib import Path
|
| 24 |
+
from typing import Literal, List
|
| 25 |
+
|
| 26 |
+
import imageio.v3 as iio
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
import torch.nn.functional as F
|
| 30 |
+
import tyro
|
| 31 |
+
import viser
|
| 32 |
+
import viser.transforms as vt
|
| 33 |
+
from einops import rearrange
|
| 34 |
+
|
| 35 |
+
from seva.eval import (
|
| 36 |
+
IS_TORCH_NIGHTLY,
|
| 37 |
+
chunk_input_and_test,
|
| 38 |
+
create_transforms_simple,
|
| 39 |
+
infer_prior_stats,
|
| 40 |
+
run_one_scene,
|
| 41 |
+
transform_img_and_K,
|
| 42 |
+
)
|
| 43 |
+
from seva.geometry import (
|
| 44 |
+
DEFAULT_FOV_RAD,
|
| 45 |
+
get_default_intrinsics,
|
| 46 |
+
get_preset_pose_fov,
|
| 47 |
+
normalize_scene,
|
| 48 |
+
)
|
| 49 |
+
from seva.model import SGMWrapper
|
| 50 |
+
from seva.modules.autoencoder import AutoEncoder
|
| 51 |
+
from seva.modules.conditioner import CLIPConditioner
|
| 52 |
+
from seva.modules.preprocessor import Dust3rPipeline
|
| 53 |
+
from seva.sampling import DDPMDiscretization, DiscreteDenoiser
|
| 54 |
+
from seva.utils import load_model
|
| 55 |
+
|
| 56 |
+
device = "cuda:0"
|
| 57 |
+
|
| 58 |
+
# Constants.
|
| 59 |
+
WORK_DIR = "work_dirs/demo_gr"
|
| 60 |
+
MAX_SESSIONS = 1
|
| 61 |
+
|
| 62 |
+
if IS_TORCH_NIGHTLY:
|
| 63 |
+
COMPILE = True
|
| 64 |
+
os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1"
|
| 65 |
+
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
| 66 |
+
else:
|
| 67 |
+
COMPILE = False
|
| 68 |
+
|
| 69 |
+
# Shared global variables across sessions.
|
| 70 |
+
DUST3R = Dust3rPipeline(device=device) # type: ignore
|
| 71 |
+
MODEL = SGMWrapper(load_model(device="cpu", verbose=True).eval()).to(device)
|
| 72 |
+
AE = AutoEncoder(chunk_size=1).to(device)
|
| 73 |
+
CONDITIONER = CLIPConditioner().to(device)
|
| 74 |
+
DISCRETIZATION = DDPMDiscretization()
|
| 75 |
+
DENOISER = DiscreteDenoiser(discretization=DISCRETIZATION, num_idx=1000, device=device)
|
| 76 |
+
VERSION_DICT = {
|
| 77 |
+
"H": 576,
|
| 78 |
+
"W": 576,
|
| 79 |
+
"T": 21,
|
| 80 |
+
"C": 4,
|
| 81 |
+
"f": 8,
|
| 82 |
+
"options": {},
|
| 83 |
+
}
|
| 84 |
+
SERVERS = {}
|
| 85 |
+
ABORT_EVENTS = {}
|
| 86 |
+
|
| 87 |
+
if COMPILE:
|
| 88 |
+
MODEL = torch.compile(MODEL)
|
| 89 |
+
CONDITIONER = torch.compile(CONDITIONER)
|
| 90 |
+
AE = torch.compile(AE)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class SevaRenderer(object):
|
| 94 |
+
def __init__(self):
|
| 95 |
+
self.gui_state = None
|
| 96 |
+
|
| 97 |
+
def preprocess(self, input_img_path: str) -> dict:
|
| 98 |
+
# Simply hardcode these such that aspect ratio is always kept and
|
| 99 |
+
# shorter side is resized to 576. This is only to make GUI option fewer
|
| 100 |
+
# though, changing it still works.
|
| 101 |
+
shorter: int = 576
|
| 102 |
+
# Has to be 64 multiple for the network.
|
| 103 |
+
shorter = round(shorter / 64) * 64
|
| 104 |
+
|
| 105 |
+
# Assume `Basic` demo mode: just hardcode the camera parameters and ignore points.
|
| 106 |
+
input_imgs = torch.as_tensor(
|
| 107 |
+
iio.imread(input_img_path) / 255.0, dtype=torch.float32
|
| 108 |
+
)[None, ..., :3]
|
| 109 |
+
input_imgs = transform_img_and_K(
|
| 110 |
+
input_imgs.permute(0, 3, 1, 2),
|
| 111 |
+
shorter,
|
| 112 |
+
K=None,
|
| 113 |
+
size_stride=64,
|
| 114 |
+
)[0].permute(0, 2, 3, 1)
|
| 115 |
+
input_Ks = get_default_intrinsics(
|
| 116 |
+
aspect_ratio=input_imgs.shape[2] / input_imgs.shape[1]
|
| 117 |
+
)
|
| 118 |
+
input_c2ws = torch.eye(4)[None]
|
| 119 |
+
# Simulate a small time interval such that gradio can update
|
| 120 |
+
# propgress properly.
|
| 121 |
+
time.sleep(0.1)
|
| 122 |
+
return {
|
| 123 |
+
"input_imgs": input_imgs,
|
| 124 |
+
"input_Ks": input_Ks,
|
| 125 |
+
"input_c2ws": input_c2ws,
|
| 126 |
+
"input_wh": (input_imgs.shape[2], input_imgs.shape[1]),
|
| 127 |
+
"points": [np.zeros((0, 3))],
|
| 128 |
+
"point_colors": [np.zeros((0, 3))],
|
| 129 |
+
"scene_scale": 1.0,
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
def render(
|
| 133 |
+
self,
|
| 134 |
+
preprocessed: dict,
|
| 135 |
+
seed: int,
|
| 136 |
+
chunk_strategy: str,
|
| 137 |
+
cfg: float,
|
| 138 |
+
preset_traj: Literal[
|
| 139 |
+
"orbit",
|
| 140 |
+
"spiral",
|
| 141 |
+
"lemniscate",
|
| 142 |
+
"zoom-in",
|
| 143 |
+
"zoom-out",
|
| 144 |
+
"dolly zoom-in",
|
| 145 |
+
"dolly zoom-out",
|
| 146 |
+
"move-forward",
|
| 147 |
+
"move-backward",
|
| 148 |
+
"move-up",
|
| 149 |
+
"move-down",
|
| 150 |
+
"move-left",
|
| 151 |
+
"move-right",
|
| 152 |
+
],
|
| 153 |
+
num_frames: int,
|
| 154 |
+
zoom_factor: float | None,
|
| 155 |
+
camera_scale: float,
|
| 156 |
+
output_dir: str,
|
| 157 |
+
) -> str:
|
| 158 |
+
# Generate a unique render name based on the input image filename and preset_traj
|
| 159 |
+
input_img_name = osp.splitext(osp.basename(preprocessed["input_img_path"]))[0]
|
| 160 |
+
render_name = f"{input_img_name}_{preset_traj}"
|
| 161 |
+
render_dir = osp.join(output_dir, input_img_name)
|
| 162 |
+
os.makedirs(render_dir, exist_ok=True)
|
| 163 |
+
|
| 164 |
+
input_imgs, input_Ks, input_c2ws, (W, H) = (
|
| 165 |
+
preprocessed["input_imgs"],
|
| 166 |
+
preprocessed["input_Ks"],
|
| 167 |
+
preprocessed["input_c2ws"],
|
| 168 |
+
preprocessed["input_wh"],
|
| 169 |
+
)
|
| 170 |
+
num_inputs = len(input_imgs)
|
| 171 |
+
assert num_inputs == 1
|
| 172 |
+
input_c2ws = torch.eye(4)[None].to(dtype=input_c2ws.dtype)
|
| 173 |
+
target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_preset(
|
| 174 |
+
preprocessed, preset_traj, num_frames, zoom_factor
|
| 175 |
+
)
|
| 176 |
+
all_c2ws = torch.cat([input_c2ws, target_c2ws], 0)
|
| 177 |
+
all_Ks = (
|
| 178 |
+
torch.cat([input_Ks, target_Ks], 0)
|
| 179 |
+
* input_Ks.new_tensor([W, H, 1])[:, None]
|
| 180 |
+
)
|
| 181 |
+
num_targets = len(target_c2ws)
|
| 182 |
+
input_indices = list(range(num_inputs))
|
| 183 |
+
target_indices = np.arange(num_inputs, num_inputs + num_targets).tolist()
|
| 184 |
+
# Get anchor cameras.
|
| 185 |
+
T = VERSION_DICT["T"]
|
| 186 |
+
version_dict = copy.deepcopy(VERSION_DICT)
|
| 187 |
+
num_anchors = infer_prior_stats(
|
| 188 |
+
T,
|
| 189 |
+
num_inputs,
|
| 190 |
+
num_total_frames=num_targets,
|
| 191 |
+
version_dict=version_dict,
|
| 192 |
+
)
|
| 193 |
+
# infer_prior_stats modifies T in-place.
|
| 194 |
+
T = version_dict["T"]
|
| 195 |
+
assert isinstance(num_anchors, int)
|
| 196 |
+
anchor_indices = np.linspace(
|
| 197 |
+
num_inputs,
|
| 198 |
+
num_inputs + num_targets - 1,
|
| 199 |
+
num_anchors,
|
| 200 |
+
).tolist()
|
| 201 |
+
anchor_c2ws = all_c2ws[[round(ind) for ind in anchor_indices]]
|
| 202 |
+
anchor_Ks = all_Ks[[round(ind) for ind in anchor_indices]]
|
| 203 |
+
# Create image conditioning.
|
| 204 |
+
all_imgs_np = (
|
| 205 |
+
F.pad(input_imgs, (0, 0, 0, 0, 0, 0, 0, num_targets), value=0.0).numpy()
|
| 206 |
+
* 255.0
|
| 207 |
+
).astype(np.uint8)
|
| 208 |
+
image_cond = {
|
| 209 |
+
"img": all_imgs_np,
|
| 210 |
+
"input_indices": input_indices,
|
| 211 |
+
"prior_indices": anchor_indices,
|
| 212 |
+
}
|
| 213 |
+
# Create camera conditioning (K is unnormalized).
|
| 214 |
+
camera_cond = {
|
| 215 |
+
"c2w": all_c2ws,
|
| 216 |
+
"K": all_Ks,
|
| 217 |
+
"input_indices": list(range(num_inputs + num_targets)),
|
| 218 |
+
}
|
| 219 |
+
# Run rendering.
|
| 220 |
+
num_steps = 50
|
| 221 |
+
options_ori = VERSION_DICT["options"]
|
| 222 |
+
options = copy.deepcopy(options_ori)
|
| 223 |
+
options["chunk_strategy"] = chunk_strategy
|
| 224 |
+
options["video_save_fps"] = 30.0
|
| 225 |
+
options["beta_linear_start"] = 5e-6
|
| 226 |
+
options["log_snr_shift"] = 2.4
|
| 227 |
+
options["guider_types"] = [1, 2]
|
| 228 |
+
options["cfg"] = [
|
| 229 |
+
float(cfg),
|
| 230 |
+
3.0 if num_inputs >= 9 else 2.0,
|
| 231 |
+
] # We define semi-dense-view regime to have 9 input views.
|
| 232 |
+
options["camera_scale"] = camera_scale
|
| 233 |
+
options["num_steps"] = num_steps
|
| 234 |
+
options["cfg_min"] = 1.2
|
| 235 |
+
options["encoding_t"] = 1
|
| 236 |
+
options["decoding_t"] = 1
|
| 237 |
+
task = "img2trajvid"
|
| 238 |
+
# Get number of first pass chunks.
|
| 239 |
+
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T
|
| 240 |
+
chunk_strategy_first_pass = options.get(
|
| 241 |
+
"chunk_strategy_first_pass", "gt-nearest"
|
| 242 |
+
)
|
| 243 |
+
num_chunks_0 = len(
|
| 244 |
+
chunk_input_and_test(
|
| 245 |
+
T_first_pass,
|
| 246 |
+
input_c2ws,
|
| 247 |
+
anchor_c2ws,
|
| 248 |
+
input_indices,
|
| 249 |
+
image_cond["prior_indices"],
|
| 250 |
+
options={**options, "sampler_verbose": False},
|
| 251 |
+
task=task,
|
| 252 |
+
chunk_strategy=chunk_strategy_first_pass,
|
| 253 |
+
gt_input_inds=list(range(input_c2ws.shape[0])),
|
| 254 |
+
)[1]
|
| 255 |
+
)
|
| 256 |
+
# Get number of second pass chunks.
|
| 257 |
+
anchor_argsort = np.argsort(input_indices + anchor_indices).tolist()
|
| 258 |
+
anchor_indices = np.array(input_indices + anchor_indices)[
|
| 259 |
+
anchor_argsort
|
| 260 |
+
].tolist()
|
| 261 |
+
gt_input_inds = [anchor_argsort.index(i) for i in range(input_c2ws.shape[0])]
|
| 262 |
+
anchor_c2ws_second_pass = torch.cat([input_c2ws, anchor_c2ws], dim=0)[
|
| 263 |
+
anchor_argsort
|
| 264 |
+
]
|
| 265 |
+
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T
|
| 266 |
+
chunk_strategy = options.get("chunk_strategy", "nearest")
|
| 267 |
+
num_chunks_1 = len(
|
| 268 |
+
chunk_input_and_test(
|
| 269 |
+
T_second_pass,
|
| 270 |
+
anchor_c2ws_second_pass,
|
| 271 |
+
target_c2ws,
|
| 272 |
+
anchor_indices,
|
| 273 |
+
target_indices,
|
| 274 |
+
options={**options, "sampler_verbose": False},
|
| 275 |
+
task=task,
|
| 276 |
+
chunk_strategy=chunk_strategy,
|
| 277 |
+
gt_input_inds=gt_input_inds,
|
| 278 |
+
)[1]
|
| 279 |
+
)
|
| 280 |
+
video_path_generator = run_one_scene(
|
| 281 |
+
task=task,
|
| 282 |
+
version_dict={
|
| 283 |
+
"H": H,
|
| 284 |
+
"W": W,
|
| 285 |
+
"T": T,
|
| 286 |
+
"C": VERSION_DICT["C"],
|
| 287 |
+
"f": VERSION_DICT["f"],
|
| 288 |
+
"options": options,
|
| 289 |
+
},
|
| 290 |
+
model=MODEL,
|
| 291 |
+
ae=AE,
|
| 292 |
+
conditioner=CONDITIONER,
|
| 293 |
+
denoiser=DENOISER,
|
| 294 |
+
image_cond=image_cond,
|
| 295 |
+
camera_cond=camera_cond,
|
| 296 |
+
save_path=render_dir,
|
| 297 |
+
use_traj_prior=True,
|
| 298 |
+
traj_prior_c2ws=anchor_c2ws,
|
| 299 |
+
traj_prior_Ks=anchor_Ks,
|
| 300 |
+
seed=seed,
|
| 301 |
+
gradio=True,
|
| 302 |
+
)
|
| 303 |
+
for video_path in video_path_generator:
|
| 304 |
+
# Rename the video file to the desired format
|
| 305 |
+
new_video_path = osp.join(render_dir, f"{render_name}.mp4")
|
| 306 |
+
os.rename(video_path, new_video_path)
|
| 307 |
+
return new_video_path
|
| 308 |
+
return ""
|
| 309 |
+
|
| 310 |
+
def get_target_c2ws_and_Ks_from_preset(
|
| 311 |
+
self,
|
| 312 |
+
preprocessed: dict,
|
| 313 |
+
preset_traj: Literal[
|
| 314 |
+
"orbit",
|
| 315 |
+
"spiral",
|
| 316 |
+
"lemniscate",
|
| 317 |
+
"zoom-in",
|
| 318 |
+
"zoom-out",
|
| 319 |
+
"dolly zoom-in",
|
| 320 |
+
"dolly zoom-out",
|
| 321 |
+
"move-forward",
|
| 322 |
+
"move-backward",
|
| 323 |
+
"move-up",
|
| 324 |
+
"move-down",
|
| 325 |
+
"move-left",
|
| 326 |
+
"move-right",
|
| 327 |
+
],
|
| 328 |
+
num_frames: int,
|
| 329 |
+
zoom_factor: float | None,
|
| 330 |
+
):
|
| 331 |
+
img_wh = preprocessed["input_wh"]
|
| 332 |
+
start_c2w = preprocessed["input_c2ws"][0]
|
| 333 |
+
start_w2c = torch.linalg.inv(start_c2w)
|
| 334 |
+
look_at = torch.tensor([0, 0, 10])
|
| 335 |
+
start_fov = DEFAULT_FOV_RAD
|
| 336 |
+
target_c2ws, target_fovs = get_preset_pose_fov(
|
| 337 |
+
preset_traj,
|
| 338 |
+
num_frames,
|
| 339 |
+
start_w2c,
|
| 340 |
+
look_at,
|
| 341 |
+
-start_c2w[:3, 1],
|
| 342 |
+
start_fov,
|
| 343 |
+
spiral_radii=[1.0, 1.0, 0.5],
|
| 344 |
+
zoom_factor=zoom_factor,
|
| 345 |
+
)
|
| 346 |
+
target_c2ws = torch.as_tensor(target_c2ws)
|
| 347 |
+
target_fovs = torch.as_tensor(target_fovs)
|
| 348 |
+
target_Ks = get_default_intrinsics(
|
| 349 |
+
target_fovs, # type: ignore
|
| 350 |
+
aspect_ratio=img_wh[0] / img_wh[1],
|
| 351 |
+
)
|
| 352 |
+
return target_c2ws, target_Ks
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def main(
|
| 356 |
+
input_path: str,
|
| 357 |
+
preset_traj: List[Literal[
|
| 358 |
+
"orbit",
|
| 359 |
+
"spiral",
|
| 360 |
+
"lemniscate",
|
| 361 |
+
"zoom-in",
|
| 362 |
+
"zoom-out",
|
| 363 |
+
"dolly zoom-in",
|
| 364 |
+
"dolly zoom-out",
|
| 365 |
+
"move-forward",
|
| 366 |
+
"move-backward",
|
| 367 |
+
"move-up",
|
| 368 |
+
"move-down",
|
| 369 |
+
"move-left",
|
| 370 |
+
"move-right",
|
| 371 |
+
]],
|
| 372 |
+
num_frames: int = 80,
|
| 373 |
+
zoom_factor: float | None = None,
|
| 374 |
+
seed: int = 23,
|
| 375 |
+
chunk_strategy: str = "interp",
|
| 376 |
+
cfg: float = 4.0,
|
| 377 |
+
camera_scale: float = 2.0,
|
| 378 |
+
output_dir: str = WORK_DIR,
|
| 379 |
+
):
|
| 380 |
+
renderer = SevaRenderer()
|
| 381 |
+
|
| 382 |
+
# Check if input_path is a directory or a single image
|
| 383 |
+
if osp.isdir(input_path):
|
| 384 |
+
image_paths = [osp.join(input_path, fname) for fname in os.listdir(input_path) if fname.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
| 385 |
+
else:
|
| 386 |
+
image_paths = [input_path]
|
| 387 |
+
|
| 388 |
+
for input_img_path in image_paths:
|
| 389 |
+
preprocessed = renderer.preprocess(input_img_path)
|
| 390 |
+
preprocessed["input_img_path"] = input_img_path # Add input_img_path to preprocessed dict
|
| 391 |
+
|
| 392 |
+
for traj in preset_traj:
|
| 393 |
+
video_path = renderer.render(
|
| 394 |
+
preprocessed,
|
| 395 |
+
seed,
|
| 396 |
+
chunk_strategy,
|
| 397 |
+
cfg,
|
| 398 |
+
traj,
|
| 399 |
+
num_frames,
|
| 400 |
+
zoom_factor,
|
| 401 |
+
camera_scale,
|
| 402 |
+
output_dir,
|
| 403 |
+
)
|
| 404 |
+
print(f"Rendered video saved to: {video_path}")
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
if __name__ == "__main__":
|
| 408 |
+
tyro.cli(main)
|