File size: 7,945 Bytes
42d64b4
 
 
 
 
 
 
 
31a1d92
 
42d64b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a1d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42d64b4
 
 
31a1d92
 
 
 
 
 
 
 
 
 
 
 
 
 
42d64b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env python3
"""
Hugging Face Space app for CoEdIT Handler
"""
import gradio as gr
import sys
import os
import json
from flask import Flask, request, jsonify
from flask_cors import CORS

# Add current directory to path so we can import handler
sys.path.append(os.path.dirname(os.path.abspath(__file__)))

from handler import EndpointHandler

# Initialize the handler
print("🚀 Initializing CoEdIT Handler...")
try:
    handler = EndpointHandler("grammarly/coedit-large")
    print("✅ Handler initialized successfully")
except Exception as e:
    print(f"❌ Failed to initialize handler: {e}")
    handler = None

def process_text(text, num_return_sequences=1, temperature=1.0):
    """Process text through the CoEdIT handler"""
    if handler is None:
        return "❌ Handler not initialized. Please check the logs."
    
    try:
        # Prepare input for the handler
        inputs = {
            "inputs": [text],
            "parameters": {
                "num_return_sequences": num_return_sequences,
                "temperature": temperature
            }
        }
        
        # Process through handler
        result = handler(inputs)
        
        if result.get("success", False):
            results = result.get("results", [])
            if results:
                enhanced = results[0].get("enhanced_sentence", "")
                changes = results[0].get("changes", [])
                
                # Format the response
                response = f"**Enhanced Text:**\n{enhanced}\n\n"
                
                if changes:
                    response += "**Changes Made:**\n"
                    for i, change in enumerate(changes, 1):
                        original = change.get("original_phrase", "")
                        new = change.get("new_phrase", "")
                        if original and new:
                            response += f"{i}. '{original}' → '{new}'\n"
                
                return response
            else:
                return "No results returned."
        else:
            return f"❌ Error: {result.get('error', 'Unknown error')}"
            
    except Exception as e:
        return f"❌ Error processing text: {str(e)}"

# Create Gradio interface
def create_interface():
    with gr.Blocks(title="CoEdIT Handler", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # CoEdIT Text Editor
        
        This is a custom handler for the Grammarly CoEdIT model, providing grammar correction and text enhancement.
        """)
        
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(
                    label="Input Text",
                    placeholder="Fix the grammar: When I grow up, I start to understand what he said is quite right.",
                    lines=3
                )
                
                with gr.Row():
                    num_sequences = gr.Slider(
                        minimum=1,
                        maximum=5,
                        value=1,
                        step=1,
                        label="Number of variations"
                    )
                    
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=2.0,
                        value=1.0,
                        step=0.1,
                        label="Temperature"
                    )
                
                process_btn = gr.Button("Process Text", variant="primary")
                
            with gr.Column():
                output_text = gr.Markdown(label="Enhanced Text")
        
        # Example texts
        gr.Examples(
            examples=[
                "Fix the grammar: When I grow up, I start to understand what he said is quite right.",
                "Make this text coherent: Their flight is weak. They run quickly through the tree canopy.",
                "Rewrite to make this easier to understand: A storm surge is what forecasters consider a hurricane's most treacherous aspect.",
                "Paraphrase this: Do you know where I was born?",
                "Write this more formally: omg i love that song im listening to it right now"
            ],
            inputs=input_text
        )
        
        # Event handlers
        process_btn.click(
            fn=process_text,
            inputs=[input_text, num_sequences, temperature],
            outputs=output_text
        )
        
        # API endpoint info
        gr.Markdown("""
        ## API Endpoint
        
        This Space also provides an API endpoint at `/predict` for programmatic access:
        
        ```bash
        curl -X POST "https://your-space-url.hf.space/predict" \\
             -H "Content-Type: application/json" \\
             -d '{"inputs": ["Your text here"]}'
        ```
        """)
    
    return demo

# Create Flask app for API endpoints
app = Flask(__name__)
CORS(app)  # Enable CORS for cross-origin requests

@app.route('/predict', methods=['POST'])
def api_predict():
    """API endpoint for inference calls from external applications"""
    try:
        # Get JSON data from request
        data = request.get_json()
        
        if not data:
            return jsonify({
                "success": False,
                "error": "No JSON data provided"
            }), 400
        
        # Extract inputs and parameters
        inputs = data.get('inputs', [])
        parameters = data.get('parameters', {})
        
        # If inputs is a single string, wrap it in a list
        if isinstance(inputs, str):
            inputs = [inputs]
        
        if not inputs:
            return jsonify({
                "success": False,
                "error": "No inputs provided"
            }), 400
        
        # Process through handler
        result = handler({
            "inputs": inputs,
            "parameters": parameters
        })
        
        return jsonify(result)
        
    except Exception as e:
        return jsonify({
            "success": False,
            "error": f"Error processing request: {str(e)}"
        }), 500

@app.route('/health', methods=['GET'])
def health_check():
    """Health check endpoint"""
    return jsonify({
        "status": "healthy",
        "handler_initialized": handler is not None
    })

@app.route('/info', methods=['GET'])
def api_info():
    """API information endpoint"""
    return jsonify({
        "name": "CoEdIT Grammar Corrector API",
        "version": "1.0.0",
        "description": "API for grammar correction and text enhancement using Grammarly CoEdIT model",
        "endpoints": {
            "/predict": "POST - Main inference endpoint",
            "/health": "GET - Health check",
            "/info": "GET - API information"
        },
        "input_format": {
            "inputs": "List of strings or single string to process",
            "parameters": {
                "num_return_sequences": "Number of variations to generate (default: 1)",
                "temperature": "Sampling temperature (default: 1.0)"
            }
        },
        "example_request": {
            "inputs": ["Fix the grammar: When I grow up, I start to understand what he said is quite right."],
            "parameters": {
                "num_return_sequences": 1,
                "temperature": 1.0
            }
        }
    })

# Create the interface
if __name__ == "__main__":
    demo = create_interface()
    
    # Launch both Gradio and Flask
    # Gradio will run on port 7860, Flask on port 7861
    import threading
    
    def run_flask():
        app.run(host="0.0.0.0", port=7861, debug=False)
    
    # Start Flask in a separate thread
    flask_thread = threading.Thread(target=run_flask)
    flask_thread.daemon = True
    flask_thread.start()
    
    # Launch Gradio
    demo.launch(server_name="0.0.0.0", server_port=7860)