syuanteng315's picture
Create app.py
2ea68e4 verified
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# 加载 Trash-Net 模型
model_name = "prithivMLmods/Trash-Net"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# 定义垃圾分类函数
def trash_classification(image):
"""输入图片,返回垃圾分类结果"""
if image is None:
return {}
# 转换图片为 RGB
image = Image.fromarray(image).convert("RGB")
# 转换成模型需要的 tensor
inputs = processor(images=image, return_tensors="pt")
# 模型预测
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
# 分类标签
labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
# 返回每个类别的概率
predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# 创建 Gradio 接口
iface = gr.Interface(
fn=trash_classification,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction Scores"),
title="Trash Classification",
description="Upload an image to classify the type of waste material."
)
# 启动
if __name__ == "__main__":
iface.launch()