Update app.py
Browse files
app.py
CHANGED
|
@@ -26,25 +26,28 @@ class SomaliQA:
|
|
| 26 |
return parts[0].replace("Su'aal:", "").strip(), parts[1].strip()
|
| 27 |
return None, None
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
def answer(self, user_question):
|
| 30 |
if not user_question.strip().endswith("?"):
|
| 31 |
user_question += "?"
|
| 32 |
|
| 33 |
-
|
| 34 |
|
| 35 |
# Step 1: Exact match
|
| 36 |
for text in self.texts:
|
| 37 |
su_aal, jawaab = self.extract_qa(text)
|
| 38 |
-
if su_aal and
|
| 39 |
-
return jawaab # ✅ Return exact answer
|
| 40 |
|
| 41 |
# Step 2: Semantic match
|
| 42 |
-
user_emb = self.embedder.encode(
|
| 43 |
hits = util.semantic_search(user_emb, self.embeddings, top_k=1)
|
| 44 |
if hits and len(hits[0]) > 0:
|
| 45 |
idx = hits[0][0]['corpus_id']
|
| 46 |
su_aal, jawaab = self.extract_qa(self.texts[idx])
|
| 47 |
-
return jawaab # ✅ Return
|
| 48 |
|
| 49 |
return "Ma helin jawaab ku habboon su’aashaada."
|
| 50 |
|
|
@@ -60,7 +63,7 @@ gr.Interface(
|
|
| 60 |
fn=qa_interface,
|
| 61 |
inputs="text",
|
| 62 |
outputs="text",
|
| 63 |
-
title="Somali QA
|
| 64 |
-
description="Weydii su’aal
|
| 65 |
theme="compact"
|
| 66 |
).launch()
|
|
|
|
| 26 |
return parts[0].replace("Su'aal:", "").strip(), parts[1].strip()
|
| 27 |
return None, None
|
| 28 |
|
| 29 |
+
def clean_text(self, text):
|
| 30 |
+
return text.strip().lower().rstrip("?").replace("’", "'").replace(" ", " ")
|
| 31 |
+
|
| 32 |
def answer(self, user_question):
|
| 33 |
if not user_question.strip().endswith("?"):
|
| 34 |
user_question += "?"
|
| 35 |
|
| 36 |
+
user_clean = self.clean_text(user_question)
|
| 37 |
|
| 38 |
# Step 1: Exact match
|
| 39 |
for text in self.texts:
|
| 40 |
su_aal, jawaab = self.extract_qa(text)
|
| 41 |
+
if su_aal and user_clean == self.clean_text(su_aal):
|
| 42 |
+
return jawaab # ✅ Return exact dataset answer
|
| 43 |
|
| 44 |
# Step 2: Semantic match
|
| 45 |
+
user_emb = self.embedder.encode(user_clean, convert_to_tensor=True)
|
| 46 |
hits = util.semantic_search(user_emb, self.embeddings, top_k=1)
|
| 47 |
if hits and len(hits[0]) > 0:
|
| 48 |
idx = hits[0][0]['corpus_id']
|
| 49 |
su_aal, jawaab = self.extract_qa(self.texts[idx])
|
| 50 |
+
return jawaab # ✅ Return semantically matched answer
|
| 51 |
|
| 52 |
return "Ma helin jawaab ku habboon su’aashaada."
|
| 53 |
|
|
|
|
| 63 |
fn=qa_interface,
|
| 64 |
inputs="text",
|
| 65 |
outputs="text",
|
| 66 |
+
title="Somali GPT-2 QA System (Dataset-based)",
|
| 67 |
+
description="Weydii su’aal ku saabsan beeraha — waxaad helaysaa jawaab sax ah oo laga soo qaaday dataset-kaaga.",
|
| 68 |
theme="compact"
|
| 69 |
).launch()
|