File size: 1,276 Bytes
3b35aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import gradio as gr

model = Wav2Vec2ForCTC.from_pretrained("tacab/tacab_asr_somali")
processor = Wav2Vec2Processor.from_pretrained("tacab/tacab_asr_somali")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def transcribe(audio_path):
    waveform, sample_rate = torchaudio.load(audio_path)
    if sample_rate != 16000:
        waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
    if waveform.shape[0] > 1:
        waveform = waveform.mean(dim=0, keepdim=True)
    inputs = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt")
    input_values = inputs.input_values.to(device)
    with torch.no_grad():
        logits = model(input_values).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)[0]
    return transcription.lower()

iface = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio(type="filepath", label="πŸŽ™οΈ Somali Audio"),
    outputs=gr.Text(label="πŸ“„ Transcription"),
    title="Tacab Somali ASR",
    description="Speak Somali and get transcription back!",
)

iface.launch(server_name="0.0.0.0")