Spaces:
Sleeping
Sleeping
backup
Browse files- app.py +29 -16
- extract_samples.py +137 -0
app.py
CHANGED
|
@@ -34,7 +34,6 @@ dataset_post_ids = list(
|
|
| 34 |
photoexp = pd.read_csv("./photoexp_filtered.csv")
|
| 35 |
valid_post_ids = set(photoexp.post_id.tolist())
|
| 36 |
|
| 37 |
-
# filter RESULTS_BACKUP_REPO to include only valid_post_ids using batched processing
|
| 38 |
dataset = dataset.filter(
|
| 39 |
lambda xs: [x in valid_post_ids for x in xs["post_id"]],
|
| 40 |
batched=True,
|
|
@@ -51,47 +50,61 @@ def sync_with_hub():
|
|
| 51 |
"""
|
| 52 |
print("Starting sync with hub...")
|
| 53 |
data_dir = Path("./data")
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
|
| 61 |
# Clone/pull latest data from hub
|
| 62 |
-
# Use token in the URL for authentication following HF's new format
|
| 63 |
token = os.environ["HF_TOKEN"]
|
| 64 |
-
username = "taesiri"
|
| 65 |
repo_url = (
|
| 66 |
f"https://{username}:{token}@huggingface.co/datasets/{RESULTS_BACKUP_REPO}"
|
| 67 |
)
|
| 68 |
hub_data_dir = Path("hub_data")
|
| 69 |
|
| 70 |
if hub_data_dir.exists():
|
| 71 |
-
# If repo exists, do a git pull
|
| 72 |
print("Pulling latest changes...")
|
| 73 |
repo = git.Repo(hub_data_dir)
|
| 74 |
origin = repo.remotes.origin
|
| 75 |
-
# Set the new URL with token
|
| 76 |
if "https://" in origin.url:
|
| 77 |
origin.set_url(repo_url)
|
| 78 |
origin.pull()
|
| 79 |
else:
|
| 80 |
-
# Clone the repo with token
|
| 81 |
print("Cloning repository...")
|
| 82 |
git.Repo.clone_from(repo_url, hub_data_dir)
|
| 83 |
|
| 84 |
# Merge hub data with local data
|
| 85 |
hub_data_source = hub_data_dir / "data"
|
| 86 |
if hub_data_source.exists():
|
| 87 |
-
# Create data dir if it doesn't exist
|
| 88 |
data_dir.mkdir(exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
# Copy files from hub
|
| 91 |
for item in hub_data_source.glob("*"):
|
| 92 |
-
if item.
|
|
|
|
|
|
|
| 93 |
dest = data_dir / item.name
|
| 94 |
-
if not dest.exists():
|
| 95 |
shutil.copytree(item, dest)
|
| 96 |
|
| 97 |
# Clean up cloned repo
|
|
|
|
| 34 |
photoexp = pd.read_csv("./photoexp_filtered.csv")
|
| 35 |
valid_post_ids = set(photoexp.post_id.tolist())
|
| 36 |
|
|
|
|
| 37 |
dataset = dataset.filter(
|
| 38 |
lambda xs: [x in valid_post_ids for x in xs["post_id"]],
|
| 39 |
batched=True,
|
|
|
|
| 50 |
"""
|
| 51 |
print("Starting sync with hub...")
|
| 52 |
data_dir = Path("./data")
|
| 53 |
+
local_csv_path = data_dir / "evaluation_results_exp.csv"
|
| 54 |
+
|
| 55 |
+
# Read existing local data if it exists
|
| 56 |
+
local_data = None
|
| 57 |
+
if local_csv_path.exists():
|
| 58 |
+
local_data = pd.read_csv(local_csv_path)
|
| 59 |
+
print(f"Found local data with {len(local_data)} entries")
|
| 60 |
|
| 61 |
# Clone/pull latest data from hub
|
|
|
|
| 62 |
token = os.environ["HF_TOKEN"]
|
| 63 |
+
username = "taesiri"
|
| 64 |
repo_url = (
|
| 65 |
f"https://{username}:{token}@huggingface.co/datasets/{RESULTS_BACKUP_REPO}"
|
| 66 |
)
|
| 67 |
hub_data_dir = Path("hub_data")
|
| 68 |
|
| 69 |
if hub_data_dir.exists():
|
|
|
|
| 70 |
print("Pulling latest changes...")
|
| 71 |
repo = git.Repo(hub_data_dir)
|
| 72 |
origin = repo.remotes.origin
|
|
|
|
| 73 |
if "https://" in origin.url:
|
| 74 |
origin.set_url(repo_url)
|
| 75 |
origin.pull()
|
| 76 |
else:
|
|
|
|
| 77 |
print("Cloning repository...")
|
| 78 |
git.Repo.clone_from(repo_url, hub_data_dir)
|
| 79 |
|
| 80 |
# Merge hub data with local data
|
| 81 |
hub_data_source = hub_data_dir / "data"
|
| 82 |
if hub_data_source.exists():
|
|
|
|
| 83 |
data_dir.mkdir(exist_ok=True)
|
| 84 |
+
hub_csv_path = hub_data_source / "evaluation_results_exp.csv"
|
| 85 |
+
|
| 86 |
+
if hub_csv_path.exists():
|
| 87 |
+
hub_data = pd.read_csv(hub_csv_path)
|
| 88 |
+
print(f"Found hub data with {len(hub_data)} entries")
|
| 89 |
+
|
| 90 |
+
if local_data is not None:
|
| 91 |
+
# Merge data, keeping all entries and removing exact duplicates
|
| 92 |
+
merged_data = pd.concat([local_data, hub_data]).drop_duplicates()
|
| 93 |
+
print(f"Merged data has {len(merged_data)} entries")
|
| 94 |
+
|
| 95 |
+
# Save merged data
|
| 96 |
+
merged_data.to_csv(local_csv_path, index=False)
|
| 97 |
+
else:
|
| 98 |
+
# If no local data exists, just copy hub data
|
| 99 |
+
shutil.copy2(hub_csv_path, local_csv_path)
|
| 100 |
|
| 101 |
+
# Copy any other files from hub
|
| 102 |
for item in hub_data_source.glob("*"):
|
| 103 |
+
if item.is_file() and item.name != "evaluation_results_exp.csv":
|
| 104 |
+
shutil.copy2(item, data_dir / item.name)
|
| 105 |
+
elif item.is_dir():
|
| 106 |
dest = data_dir / item.name
|
| 107 |
+
if not dest.exists():
|
| 108 |
shutil.copytree(item, dest)
|
| 109 |
|
| 110 |
# Clean up cloned repo
|
extract_samples.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import requests
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
|
| 10 |
+
# Load the experimental dataset
|
| 11 |
+
dataset = load_dataset("taesiri/IERv2-BattleResults_exp", split="train")
|
| 12 |
+
dataset_post_ids = list(
|
| 13 |
+
set(
|
| 14 |
+
load_dataset(
|
| 15 |
+
"taesiri/IERv2-BattleResults_exp", columns=["post_id"], split="train"
|
| 16 |
+
)
|
| 17 |
+
.to_pandas()
|
| 18 |
+
.post_id.tolist()
|
| 19 |
+
)
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Load and filter photoexp dataset
|
| 23 |
+
photoexp = pd.read_csv("./photoexp_filtered.csv")
|
| 24 |
+
valid_post_ids = set(photoexp.post_id.tolist())
|
| 25 |
+
|
| 26 |
+
# Filter dataset to include only valid_post_ids
|
| 27 |
+
dataset = dataset.filter(
|
| 28 |
+
lambda xs: [x in valid_post_ids for x in xs["post_id"]],
|
| 29 |
+
batched=True,
|
| 30 |
+
batch_size=256,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def download_and_save_image(url, save_path):
|
| 35 |
+
"""Download image from URL and save it to disk"""
|
| 36 |
+
try:
|
| 37 |
+
response = requests.get(url)
|
| 38 |
+
response.raise_for_status()
|
| 39 |
+
img = Image.open(BytesIO(response.content))
|
| 40 |
+
img.save(save_path)
|
| 41 |
+
return True
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error downloading image {url}: {e}")
|
| 44 |
+
return False
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_random_sample():
|
| 48 |
+
"""Get a random sample by first selecting a post_id then picking random edits for that post."""
|
| 49 |
+
# First randomly select a post_id from valid posts
|
| 50 |
+
random_post_id = random.choice(list(valid_post_ids))
|
| 51 |
+
|
| 52 |
+
# Filter dataset for this post_id
|
| 53 |
+
post_edits = dataset.filter(
|
| 54 |
+
lambda xs: [x == random_post_id for x in xs["post_id"]],
|
| 55 |
+
batched=True,
|
| 56 |
+
batch_size=256,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Get matching photoexp entries for this post_id
|
| 60 |
+
matching_photoexp_entries = photoexp[photoexp.post_id == random_post_id]
|
| 61 |
+
|
| 62 |
+
# Randomly select one edit from the dataset
|
| 63 |
+
idx = random.randint(0, len(post_edits) - 1)
|
| 64 |
+
sample = post_edits[idx]
|
| 65 |
+
|
| 66 |
+
# Randomly select one entry from the matching photoexp entries
|
| 67 |
+
if not matching_photoexp_entries.empty:
|
| 68 |
+
random_photoexp_entry = matching_photoexp_entries.sample(n=1).iloc[0]
|
| 69 |
+
additional_edited_image = random_photoexp_entry["edited_image"]
|
| 70 |
+
model_b = random_photoexp_entry.get("model")
|
| 71 |
+
if model_b is None:
|
| 72 |
+
model_b = f"REDDIT_{random_photoexp_entry['comment_id']}"
|
| 73 |
+
else:
|
| 74 |
+
return None
|
| 75 |
+
|
| 76 |
+
return {
|
| 77 |
+
"post_id": sample["post_id"],
|
| 78 |
+
"instruction": sample["instruction"],
|
| 79 |
+
"simplified_instruction": sample["simplified_instruction"],
|
| 80 |
+
"source_image": sample["source_image"],
|
| 81 |
+
"edit1_image": sample["edited_image"],
|
| 82 |
+
"edit1_model": sample["model"],
|
| 83 |
+
"edit2_image": additional_edited_image,
|
| 84 |
+
"edit2_model": model_b,
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def save_sample(sample, output_dir):
|
| 89 |
+
"""Save a sample to disk with all its components"""
|
| 90 |
+
if sample is None:
|
| 91 |
+
return False
|
| 92 |
+
|
| 93 |
+
# Create directory structure
|
| 94 |
+
sample_dir = Path(output_dir) / str(sample["post_id"])
|
| 95 |
+
sample_dir.mkdir(parents=True, exist_ok=True)
|
| 96 |
+
|
| 97 |
+
# Save instruction and metadata
|
| 98 |
+
with open(sample_dir / "metadata.txt", "w") as f:
|
| 99 |
+
f.write(f"Post ID: {sample['post_id']}\n")
|
| 100 |
+
f.write(f"Original Instruction: {sample['instruction']}\n")
|
| 101 |
+
f.write(f"Simplified Instruction: {sample['simplified_instruction']}\n")
|
| 102 |
+
f.write(f"Edit 1 Model: {sample['edit1_model']}\n")
|
| 103 |
+
f.write(f"Edit 2 Model: {sample['edit2_model']}\n")
|
| 104 |
+
|
| 105 |
+
# Save images
|
| 106 |
+
success = True
|
| 107 |
+
success &= download_and_save_image(
|
| 108 |
+
sample["source_image"], sample_dir / "source.jpg"
|
| 109 |
+
)
|
| 110 |
+
success &= download_and_save_image(sample["edit1_image"], sample_dir / "edit1.jpg")
|
| 111 |
+
success &= download_and_save_image(sample["edit2_image"], sample_dir / "edit2.jpg")
|
| 112 |
+
|
| 113 |
+
return success
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def main():
|
| 117 |
+
output_dir = Path("extracted_samples")
|
| 118 |
+
output_dir.mkdir(exist_ok=True)
|
| 119 |
+
|
| 120 |
+
num_samples = 100 # Number of samples to extract
|
| 121 |
+
successful_samples = 0
|
| 122 |
+
|
| 123 |
+
print(f"Extracting {num_samples} samples...")
|
| 124 |
+
|
| 125 |
+
while successful_samples < num_samples:
|
| 126 |
+
sample = get_random_sample()
|
| 127 |
+
if sample and save_sample(sample, output_dir):
|
| 128 |
+
successful_samples += 1
|
| 129 |
+
print(f"Successfully saved sample {successful_samples}/{num_samples}")
|
| 130 |
+
else:
|
| 131 |
+
print("Failed to save sample, trying next...")
|
| 132 |
+
|
| 133 |
+
print(f"Successfully extracted {successful_samples} samples to {output_dir}")
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
if __name__ == "__main__":
|
| 137 |
+
main()
|