Spaces:
Paused
Paused
| import gradio as gr | |
| import base64 | |
| import json | |
| import os | |
| import shutil | |
| import uuid | |
| from huggingface_hub import CommitScheduler, HfApi | |
| api = HfApi() | |
| api.login(os.environ["HF_TOKEN"]) | |
| scheduler = CommitScheduler( | |
| repo_id="taesiri/EdgeQuest", | |
| repo_type="dataset", | |
| folder_path="./data", | |
| path_in_repo="data", | |
| every=1, | |
| ) | |
| def generate_json_files( | |
| system_message, | |
| # New fields | |
| name, | |
| email_address, | |
| institution, | |
| openreview_profile, | |
| question_categories, | |
| subquestion_1_text, | |
| subquestion_1_answer, | |
| subquestion_2_text, | |
| subquestion_2_answer, | |
| # Existing fields | |
| question, | |
| final_answer, | |
| rationale_text, | |
| # Question images | |
| image1, | |
| image2, | |
| image3, | |
| image4, | |
| # Rationale images | |
| rationale_image1, | |
| rationale_image2, | |
| ): | |
| """ | |
| For each request: | |
| 1) Create a unique folder under ./data/ | |
| 2) Copy uploaded images (question + rationale) into that folder | |
| 3) Produce two JSON files: | |
| - request_urls.json (local file paths in content) | |
| - request_base64.json (base64-encoded images in content) | |
| 4) Return paths to both files for Gradio to provide as download links | |
| """ | |
| # 1) Create parent data folder if it doesn't exist | |
| parent_data_folder = "./data" | |
| os.makedirs(parent_data_folder, exist_ok=True) | |
| # 2) Generate a unique request ID and create a subfolder | |
| request_id = str(uuid.uuid4()) # unique ID | |
| request_folder = os.path.join(parent_data_folder, request_id) | |
| os.makedirs(request_folder) | |
| # Handle defaults | |
| if not system_message: | |
| system_message = "You are a helpful assistant" | |
| # Convert None strings | |
| def safe_str(val): | |
| return val if val is not None else "" | |
| name = safe_str(name) | |
| email_address = safe_str(email_address) | |
| institution = safe_str(institution) | |
| openreview_profile = safe_str(openreview_profile) | |
| # Convert question_categories to list | |
| question_categories = ( | |
| [cat.strip() for cat in safe_str(question_categories).split(",")] | |
| if question_categories | |
| else [] | |
| ) | |
| subquestion_1_text = safe_str(subquestion_1_text) | |
| subquestion_1_answer = safe_str(subquestion_1_answer) | |
| subquestion_2_text = safe_str(subquestion_2_text) | |
| subquestion_2_answer = safe_str(subquestion_2_answer) | |
| question = safe_str(question) | |
| final_answer = safe_str(final_answer) | |
| rationale_text = safe_str(rationale_text) | |
| # Collect image-like fields so we can process them in one loop | |
| all_images = [ | |
| ("question_image_1", image1), | |
| ("question_image_2", image2), | |
| ("question_image_3", image3), | |
| ("question_image_4", image4), | |
| ("rationale_image_1", rationale_image1), | |
| ("rationale_image_2", rationale_image2), | |
| ] | |
| files_list = [] | |
| for idx, (img_label, img_obj) in enumerate(all_images): | |
| if img_obj is not None: | |
| temp_path = os.path.join(request_folder, f"{img_label}.png") | |
| if isinstance(img_obj, str): | |
| # If image is a file path | |
| shutil.copy2(img_obj, temp_path) | |
| else: | |
| # If image is a numpy array | |
| gr.processing_utils.save_image(img_obj, temp_path) | |
| # Keep track of the saved path + label | |
| files_list.append((img_label, temp_path)) | |
| # Build user content in two flavors: local file paths vs base64 | |
| # We’ll store text fields as simple dictionaries, and then images separately. | |
| content_list_urls = [ | |
| {"type": "field", "label": "name", "value": name}, | |
| {"type": "field", "label": "email_address", "value": email_address}, | |
| {"type": "field", "label": "institution", "value": institution}, | |
| {"type": "field", "label": "openreview_profile", "value": openreview_profile}, | |
| {"type": "field", "label": "question_categories", "value": question_categories}, | |
| {"type": "field", "label": "subquestion_1_text", "value": subquestion_1_text}, | |
| { | |
| "type": "field", | |
| "label": "subquestion_1_answer", | |
| "value": subquestion_1_answer, | |
| }, | |
| {"type": "field", "label": "subquestion_2_text", "value": subquestion_2_text}, | |
| { | |
| "type": "field", | |
| "label": "subquestion_2_answer", | |
| "value": subquestion_2_answer, | |
| }, | |
| {"type": "field", "label": "question", "value": question}, | |
| {"type": "field", "label": "final_answer", "value": final_answer}, | |
| {"type": "field", "label": "rationale_text", "value": rationale_text}, | |
| ] | |
| content_list_base64 = [ | |
| {"type": "field", "label": "name", "value": name}, | |
| {"type": "field", "label": "email_address", "value": email_address}, | |
| {"type": "field", "label": "institution", "value": institution}, | |
| {"type": "field", "label": "openreview_profile", "value": openreview_profile}, | |
| {"type": "field", "label": "question_categories", "value": question_categories}, | |
| {"type": "field", "label": "subquestion_1_text", "value": subquestion_1_text}, | |
| { | |
| "type": "field", | |
| "label": "subquestion_1_answer", | |
| "value": subquestion_1_answer, | |
| }, | |
| {"type": "field", "label": "subquestion_2_text", "value": subquestion_2_text}, | |
| { | |
| "type": "field", | |
| "label": "subquestion_2_answer", | |
| "value": subquestion_2_answer, | |
| }, | |
| {"type": "field", "label": "question", "value": question}, | |
| {"type": "field", "label": "final_answer", "value": final_answer}, | |
| {"type": "field", "label": "rationale_text", "value": rationale_text}, | |
| ] | |
| # Append image references | |
| for img_label, file_path in files_list: | |
| # 1) Local path (URL) version | |
| rel_path = os.path.join(".", os.path.basename(file_path)) | |
| content_list_urls.append( | |
| { | |
| "type": "image_url", | |
| "label": img_label, | |
| "image_url": {"url": {"data:image/png;path": rel_path}}, | |
| } | |
| ) | |
| # 2) Base64 version | |
| with open(file_path, "rb") as f: | |
| file_bytes = f.read() | |
| img_b64_str = base64.b64encode(file_bytes).decode("utf-8") | |
| content_list_base64.append( | |
| { | |
| "type": "image_url", | |
| "label": img_label, | |
| "image_url": {"url": {"data:image/png;base64": img_b64_str}}, | |
| } | |
| ) | |
| # Build the final JSON structures for each approach | |
| i = 1 | |
| assistant_content = [ | |
| {"type": "text", "text": rationale_text}, | |
| {"type": "text", "text": final_answer}, | |
| ] | |
| # A) URLs JSON | |
| item_urls = { | |
| "custom_id": f"request______{i}", | |
| # Metadata at top level | |
| "name": name, | |
| "email_address": email_address, | |
| "institution": institution, | |
| "openreview_profile": openreview_profile, | |
| "question_categories": question_categories, | |
| "question": { | |
| "messages": [ | |
| {"role": "system", "content": system_message}, | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "label": "question", "value": question} | |
| ] | |
| + [ | |
| item | |
| for item in content_list_urls | |
| if item.get("type") == "image_url" | |
| and "question_image" in item.get("label", "") | |
| ], | |
| }, | |
| ], | |
| }, | |
| "subquestions": [ | |
| {"text": subquestion_1_text, "answer": subquestion_1_answer}, | |
| {"text": subquestion_2_text, "answer": subquestion_2_answer}, | |
| ], | |
| "answer": { | |
| "final_answer": final_answer, | |
| "rationale_text": rationale_text, | |
| "rationale_images": [ | |
| item | |
| for item in content_list_urls | |
| if item.get("type") == "image_url" | |
| and "rationale_image" in item.get("label", "") | |
| ], | |
| }, | |
| } | |
| # B) Base64 JSON | |
| item_base64 = { | |
| "custom_id": f"request______{i}", | |
| # Metadata at top level | |
| "name": name, | |
| "email_address": email_address, | |
| "institution": institution, | |
| "openreview_profile": openreview_profile, | |
| # Question-related fields at top level | |
| "question_categories": question_categories, | |
| "subquestions": [ | |
| {"text": subquestion_1_text, "answer": subquestion_1_answer}, | |
| {"text": subquestion_2_text, "answer": subquestion_2_answer}, | |
| ], | |
| "final_answer": final_answer, | |
| "rationale_text": rationale_text, | |
| "body": { | |
| "model": "MODEL_NAME", | |
| "messages": [ | |
| {"role": "system", "content": system_message}, | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "field", "label": "question", "value": question} | |
| ] | |
| + [ | |
| item | |
| for item in content_list_base64 | |
| if item.get("type") == "image_url" | |
| and "question_image" in item.get("label", "") | |
| ], | |
| }, | |
| { | |
| "role": "assistant", | |
| "content": [ | |
| {"type": "text", "text": rationale_text}, | |
| {"type": "text", "text": final_answer}, | |
| *[ | |
| item | |
| for item in content_list_base64 | |
| if item.get("type") == "image_url" | |
| and "rationale_image" in item.get("label", "") | |
| ], | |
| ], | |
| }, | |
| ], | |
| }, | |
| } | |
| # Convert each to JSON line format | |
| urls_json_line = json.dumps(item_urls, ensure_ascii=False) | |
| base64_json_line = json.dumps(item_base64, ensure_ascii=False) | |
| # 3) Write out two JSON files in request_folder | |
| urls_jsonl_path = os.path.join(request_folder, "request_urls.json") | |
| base64_jsonl_path = os.path.join(request_folder, "request_base64.json") | |
| with open(urls_jsonl_path, "w", encoding="utf-8") as f: | |
| f.write(urls_json_line + "\n") | |
| with open(base64_jsonl_path, "w", encoding="utf-8") as f: | |
| f.write(base64_json_line + "\n") | |
| # Return the two file paths so Gradio can offer them as downloads | |
| return urls_jsonl_path, base64_jsonl_path | |
| # Build the Gradio app | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Dataset Builder") | |
| with gr.Accordion("Instructions", open=True): | |
| gr.HTML( | |
| """ | |
| <h3>Instructions:</h3> | |
| <p>Welcome to the Hugging Face space for collecting questions for new benchmark datasets.</p> | |
| <table style="width:100%; border-collapse: collapse; margin: 10px 0;"> | |
| <tr> | |
| <th style="width:50%; background-color: #3366f0; padding: 8px; text-align: left; border: 1px solid #ddd;"> | |
| Required Fields | |
| </th> | |
| <th style="width:50%; background-color: #3366f0; padding: 8px; text-align: left; border: 1px solid #ddd;"> | |
| Optional Fields | |
| </th> | |
| </tr> | |
| <tr> | |
| <td style="vertical-align: top; padding: 8px; border: 1px solid #ddd;"> | |
| <ul style="margin: 0;"> | |
| <li>Author Information</li> | |
| <li>At least <b>one question image</b></li> | |
| <li>The <b>question text</b></li> | |
| <li>The <b>final answer</b></li> | |
| </ul> | |
| </td> | |
| <td style="vertical-align: top; padding: 8px; border: 1px solid #ddd;"> | |
| <ul style="margin: 0;"> | |
| <li>Up to four question images</li> | |
| <li>Supporting images for your answer</li> | |
| <li><b>Rationale text</b> to explain your reasoning</li> | |
| <li><b>Sub-questions</b> with their answers</li> | |
| </ul> | |
| </td> | |
| </tr> | |
| </table> | |
| <p>While not all fields are mandatory, providing additional context through optional fields will help create a more comprehensive dataset. After submitting a question, you can clear up the form to submit another one.</p> | |
| """ | |
| ) | |
| gr.Markdown("## Author Information") | |
| with gr.Row(): | |
| name_input = gr.Textbox(label="Name", lines=1) | |
| email_address_input = gr.Textbox(label="Email Address", lines=1) | |
| institution_input = gr.Textbox( | |
| label="Institution or 'Independent'", | |
| lines=1, | |
| placeholder="e.g. MIT, Google, Independent, etc.", | |
| ) | |
| openreview_profile_input = gr.Textbox( | |
| label="OpenReview Profile Name", | |
| lines=1, | |
| placeholder="Your OpenReview username or profile name", | |
| ) | |
| gr.Markdown("## Question Information") | |
| # Question Images - Individual Tabs | |
| with gr.Tabs(): | |
| with gr.Tab("Image 1"): | |
| image1 = gr.Image(label="Question Image 1", type="filepath") | |
| with gr.Tab("Image 2 (Optional)"): | |
| image2 = gr.Image(label="Question Image 2", type="filepath") | |
| with gr.Tab("Image 3 (Optional)"): | |
| image3 = gr.Image(label="Question Image 3", type="filepath") | |
| with gr.Tab("Image 4 (Optional)"): | |
| image4 = gr.Image(label="Question Image 4", type="filepath") | |
| question_input = gr.Textbox( | |
| label="Question", lines=15, placeholder="Type your question here..." | |
| ) | |
| question_categories_input = gr.Textbox( | |
| label="Question Categories", | |
| lines=1, | |
| placeholder="Comma-separated tags, e.g. math, geometry", | |
| ) | |
| # Answer Section | |
| gr.Markdown("## Answer ") | |
| final_answer_input = gr.Textbox( | |
| label="Final Answer", | |
| lines=1, | |
| placeholder="Enter the short/concise final answer...", | |
| ) | |
| rationale_text_input = gr.Textbox( | |
| label="Rationale Text", | |
| lines=5, | |
| placeholder="Enter the reasoning or explanation for the answer...", | |
| ) | |
| # Rationale Images - Individual Tabs | |
| with gr.Tabs(): | |
| with gr.Tab("Rationale 1 (Optional)"): | |
| rationale_image1 = gr.Image(label="Rationale Image 1", type="filepath") | |
| with gr.Tab("Rationale 2 (Optional)"): | |
| rationale_image2 = gr.Image(label="Rationale Image 2", type="filepath") | |
| # Subquestions Section | |
| gr.Markdown("## Subquestions") | |
| with gr.Row(): | |
| subquestion_1_text_input = gr.Textbox( | |
| label="Subquestion 1 Text", lines=2, placeholder="First sub-question..." | |
| ) | |
| subquestion_1_answer_input = gr.Textbox( | |
| label="Subquestion 1 Answer", | |
| lines=2, | |
| placeholder="Answer to sub-question 1...", | |
| ) | |
| with gr.Row(): | |
| subquestion_2_text_input = gr.Textbox( | |
| label="Subquestion 2 Text", lines=2, placeholder="Second sub-question..." | |
| ) | |
| subquestion_2_answer_input = gr.Textbox( | |
| label="Subquestion 2 Answer", | |
| lines=2, | |
| placeholder="Answer to sub-question 2...", | |
| ) | |
| system_message_input = gr.Textbox( | |
| label="System Message", | |
| value="You are a helpful assistant", | |
| lines=2, | |
| placeholder="Enter the system message that defines the AI assistant's role and behavior...", | |
| ) | |
| with gr.Row(): | |
| submit_button = gr.Button("Submit") | |
| clear_button = gr.Button("Clear Form") | |
| with gr.Row(): | |
| output_file_urls = gr.File( | |
| label="Download URLs JSON", interactive=False, visible=False | |
| ) | |
| output_file_base64 = gr.File( | |
| label="Download Base64 JSON", interactive=False, visible=False | |
| ) | |
| # On Submit, we call generate_json_files with all relevant fields | |
| def validate_and_generate( | |
| sys_msg, | |
| nm, | |
| em, | |
| inst, | |
| orp, | |
| qcats, | |
| sq1t, | |
| sq1a, | |
| sq2t, | |
| sq2a, | |
| q, | |
| fa, | |
| rt, | |
| i1, | |
| i2, | |
| i3, | |
| i4, | |
| ri1, | |
| ri2, | |
| ): | |
| # Check all required fields | |
| missing_fields = [] | |
| if not nm or not nm.strip(): | |
| missing_fields.append("Name") | |
| if not em or not em.strip(): | |
| missing_fields.append("Email Address") | |
| if not inst or not inst.strip(): | |
| missing_fields.append("Institution") | |
| if not q or not q.strip(): | |
| missing_fields.append("Question") | |
| if not fa or not fa.strip(): | |
| missing_fields.append("Final Answer") | |
| if not i1: | |
| missing_fields.append("First Question Image") | |
| # If any required fields are missing, return a warning and keep all fields as is | |
| if missing_fields: | |
| warning_msg = f"Required fields missing: {', '.join(missing_fields)} ⛔️" | |
| # Return all inputs unchanged plus the warning | |
| gr.Warning(warning_msg, duration=5) | |
| return gr.Button(interactive=True) | |
| # Only after successful validation, generate files but keep all fields | |
| results = generate_json_files( | |
| sys_msg, | |
| nm, | |
| em, | |
| inst, | |
| orp, | |
| qcats, | |
| sq1t, | |
| sq1a, | |
| sq2t, | |
| sq2a, | |
| q, | |
| fa, | |
| rt, | |
| i1, | |
| i2, | |
| i3, | |
| i4, | |
| ri1, | |
| ri2, | |
| ) | |
| gr.Info( | |
| "Dataset item created successfully! 🎉, Clear the form to submit a new one" | |
| ) | |
| return gr.update(interactive=False) | |
| submit_button.click( | |
| fn=validate_and_generate, | |
| inputs=[ | |
| system_message_input, | |
| name_input, | |
| email_address_input, | |
| institution_input, | |
| openreview_profile_input, | |
| question_categories_input, | |
| subquestion_1_text_input, | |
| subquestion_1_answer_input, | |
| subquestion_2_text_input, | |
| subquestion_2_answer_input, | |
| question_input, | |
| final_answer_input, | |
| rationale_text_input, | |
| image1, | |
| image2, | |
| image3, | |
| image4, | |
| rationale_image1, | |
| rationale_image2, | |
| ], | |
| outputs=[submit_button], | |
| ) | |
| # Clear button functionality | |
| def clear_form_fields(sys_msg, name, email, inst, openreview, *args): | |
| # Preserve personal info fields | |
| return [ | |
| "You are a helpful assistant", # Reset system message to default | |
| name, # Preserve name | |
| email, # Preserve email | |
| inst, # Preserve institution | |
| openreview, # Preserve OpenReview profile | |
| None, # Clear question categories | |
| None, # Clear subquestion 1 text | |
| None, # Clear subquestion 1 answer | |
| None, # Clear subquestion 2 text | |
| None, # Clear subquestion 2 answer | |
| None, # Clear question | |
| None, # Clear final answer | |
| None, # Clear rationale text | |
| None, # Clear image1 | |
| None, # Clear image2 | |
| None, # Clear image3 | |
| None, # Clear image4 | |
| None, # Clear rationale image1 | |
| None, # Clear rationale image2 | |
| None, # Clear output file urls | |
| None, # Clear output file base64 | |
| gr.update(interactive=True), # Re-enable submit button | |
| ] | |
| clear_button.click( | |
| fn=clear_form_fields, | |
| inputs=[ | |
| system_message_input, | |
| name_input, | |
| email_address_input, | |
| institution_input, | |
| openreview_profile_input, | |
| ], | |
| outputs=[ | |
| system_message_input, | |
| name_input, | |
| email_address_input, | |
| institution_input, | |
| openreview_profile_input, | |
| question_categories_input, | |
| subquestion_1_text_input, | |
| subquestion_1_answer_input, | |
| subquestion_2_text_input, | |
| subquestion_2_answer_input, | |
| question_input, | |
| final_answer_input, | |
| rationale_text_input, | |
| image1, | |
| image2, | |
| image3, | |
| image4, | |
| rationale_image1, | |
| rationale_image2, | |
| output_file_urls, | |
| output_file_base64, | |
| submit_button, | |
| ], | |
| ) | |
| demo.launch() | |