File size: 23,267 Bytes
8cb988a c4659e3 8cb988a 529341f a673e22 4277438 529341f 8cb988a 40f4bef 529341f 0811027 6f0c8ad 326122b 152ec43 d4b8585 c4659e3 40f4bef 152ec43 529341f 1af9ba6 b10cf8e 326122b 529341f 40f4bef 1da62e0 4277438 a673e22 d45c133 a673e22 0811027 6f0c8ad 8b28b6f 152ec43 529341f 326122b 529341f 591e14d 8b28b6f 591e14d 8b28b6f f699a89 8b28b6f f699a89 8b28b6f 078c56f 8b28b6f 152ec43 529341f 152ec43 529341f 152ec43 529341f 4277438 152ec43 326122b 0811027 326122b 0811027 1c2ae90 326122b 4277438 326122b 0811027 4277438 152ec43 0811027 4277438 529341f cb828cf 078c56f cb828cf 8b28b6f 591e14d 8b28b6f cb828cf 078c56f cb828cf 078c56f cb828cf 6f0c8ad e48c2ab 6f0c8ad e48c2ab 6f0c8ad 39dda52 6f0c8ad e48c2ab 6f0c8ad ed0530f d4b8585 b10cf8e d4b8585 c4659e3 cb828cf 152ec43 a673e22 529341f 152ec43 b10cf8e 529341f fd45fc8 529341f fd45fc8 326122b fd45fc8 b0c2b35 fd45fc8 529341f 152ec43 529341f 1af9ba6 fd45fc8 1af9ba6 a673e22 1af9ba6 34f8050 90e95be 1af9ba6 152ec43 b10cf8e 326122b 837d7fd 152ec43 b10cf8e 17b4852 152ec43 6196221 152ec43 6cab9df b10cf8e 6cab9df 0fecf0f 6cab9df 152ec43 0fecf0f 6cab9df 0fecf0f 6cab9df 0fecf0f 152ec43 0fecf0f 6cab9df 4e13dd6 6cab9df 152ec43 d4b8585 152ec43 4e13dd6 d4b8585 152ec43 0811027 326122b 152ec43 326122b 529341f 152ec43 529341f 591e14d 529341f 152ec43 529341f 152ec43 529341f 152ec43 591e14d 529341f 152ec43 3e136de 529341f 1af9ba6 529341f 3aedb52 152ec43 b10cf8e 529341f 152ec43 591e14d cb828cf a673e22 9be3c4b cb828cf 529341f 152ec43 529341f 152ec43 b10cf8e 9549ac6 ea01e42 529341f 3e136de 0811027 529341f 3e136de e48c2ab 529341f 4277438 529341f 3e136de 591e14d 3e136de 17b4852 c4659e3 529341f 409c1ca 591e14d 529341f 17b4852 037bc91 88ba994 037bc91 88ba994 b5f7f71 88ba994 b5f7f71 037bc91 17b4852 3e136de 73f823a b5f7f71 88ba994 b5f7f71 88ba994 b5f7f71 529341f 17b4852 529341f 17b4852 1a90954 a673e22 17b4852 529341f 17b4852 529341f 3e136de 17b4852 529341f 4277438 529341f 8b28b6f 078c56f 8b28b6f 3e136de 40f4bef 529341f d45c133 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
# install custom package
import os
os.system("pip install --no-deps ./tahoex-0.1.2-py3-none-any.whl")
# imports
import gc
import json
import uuid
import time
import tempfile
import torch
import gradio as gr
import anndata as ad
import pandas as pd
import numpy as np
import scanpy as sc
import pyarrow as pa
import pyarrow.parquet as pq
import matplotlib.pyplot as plt
from scipy import sparse
from pathlib import Path
from composer import Trainer, Callback
from tahoex.model.model import ComposerTX
from tahoex.data import CountDataset, DataCollator
# hardcoded configuration
EMB_KEY = "X_tx1-70m"
APP_TITLE = "Tx1-70M Embeddings"
APP_DESC = """
Upload an AnnData, compute Tx1-70M embeddings,
preview a UMAP, and download the results. **Limits:**
Files up to 5GB. If an AnnData contains more
than 100K cells, embeddings will be computed **only
for the first 100K cells**.
"""
# set up directories
OUTPUT_DIR = Path("./outputs")
OUTPUT_DIR.mkdir(exist_ok=True, parents=True)
# load symbol-to-ensembl mapping
with open("./symbol-to-ensembl.json", "r") as f:
SYMBOL_TO_ENSEMBL = json.load(f)
SYMBOL_TO_ENSEMBL_UCASE = {str(k).upper(): v for k, v in SYMBOL_TO_ENSEMBL.items()}
# set up parquet outputs
PARQUET_INDEX_COL = "index"
PARQUET_EMB_COL = "tx1-70m"
# constants for UMAP recoloring
OBS_NONE_OPTION = "(none)"
MAX_CATEGORIES = 50
# constants for .var preview
VAR_PREVIEW_MAX = 5
# helper to select layer from AnnData
def _pick_layer(adata, layer_name):
X = adata.layers[layer_name] if layer_name else adata.X
if sparse.issparse(X):
X = X.tocsr()
elif not isinstance(X, np.ndarray):
X = np.asarray(X)
if hasattr(X, "dtype") and X.dtype != np.float32:
X = X.astype(np.float32, copy=False)
return X
# helper to summarize DataFrame column choices
def _summarize_columns(df, preview_max=VAR_PREVIEW_MAX):
choices = []
for col in df.columns:
s = df[col]
dtype = str(s.dtype)
ex = pd.Series(s.astype(object)).dropna().astype(str).head(preview_max).tolist()
preview = ", ".join(ex) if ex else "(no values)"
if len(preview) > 47:
preview = preview[:47] + "..."
elif preview != "(no values)":
preview = preview + "..."
lbl = f"{col} · {dtype} · {preview}"
choices.append((lbl, col))
return choices
# helper to compute UMAP from given embeddings
def _compute_umap_from_emb(emb):
ad_umap = ad.AnnData(X=emb)
sc.pp.neighbors(ad_umap)
sc.tl.umap(ad_umap)
coords = np.asarray(ad_umap.obsm["X_umap"])
del ad_umap
return coords
# helper to generate unique filenames in output directory
def _unique_output(name):
stem, ext = name.rsplit(".", 1)
return OUTPUT_DIR / f"{stem}_{int(time.time())}_{uuid.uuid4().hex[:6]}.{ext}"
# helper to save outputs
def _save_outputs(adata, emb, chunk=20000):
# build schema
d_model = int(emb.shape[1])
schema = pa.schema([
pa.field(PARQUET_INDEX_COL, pa.string()),
pa.field(PARQUET_EMB_COL, pa.list_(pa.float32(), d_model)),
])
# save parquet in chunks
parquet_path = _unique_output("embs.parquet")
writer = None
try:
for i in range(0, emb.shape[0], chunk):
sl = slice(i, min(i+chunk, emb.shape[0]))
idx_arr = pa.array(adata.obs_names[sl].astype(str).tolist(), type=pa.string())
flat = pa.array(emb[sl].reshape(-1), type=pa.float32())
emb_arr = pa.FixedSizeListArray.from_arrays(flat, d_model)
batch = pa.record_batch([idx_arr, emb_arr], schema=schema)
if writer is None:
writer = pq.ParquetWriter(parquet_path, schema, compression="zstd", use_dictionary=True)
writer.write_table(pa.Table.from_batches([batch]))
finally:
if writer is not None:
writer.close()
# save AnnData
out_h5ad = _unique_output("adata_with_embs.h5ad")
adata.write(out_h5ad)
# return paths
return parquet_path, out_h5ad
# refresh dropdowns given a file object
def ensure_dropdowns(fileobj):
if fileobj is None:
return (
gr.Dropdown(choices=["<use .X>"], value="<use .X>"),
gr.Dropdown(choices=[], value=None)
)
try:
adata = sc.read_h5ad(fileobj.name, backed="r")
adata.var = adata.var.reset_index(drop=False, names="index")
layers = list(adata.layers.keys())
var_choices = _summarize_columns(adata.var)
del adata
gc.collect()
default_var = var_choices[0][1] if var_choices else None
return (
gr.Dropdown(choices=["<use .X>"] + layers, value="<use .X>"),
gr.Dropdown(choices=var_choices, value=default_var)
)
except Exception:
return (
gr.Dropdown(choices=["<use .X>"], value="<use .X>"),
gr.Dropdown(choices=[], value=None)
)
# draw an uncolored UMAP
def draw_uncolored(coords, title_suffix=None):
fig = plt.figure(figsize=(5.5, 5.0))
ax = fig.add_subplot(111)
ax.scatter(coords[:, 0], coords[:, 1], s=3, alpha=0.75)
ttl = "Tx1-70M embeddings"
if title_suffix:
ttl += f" ({title_suffix})"
ax.set_title(ttl)
ax.set_xlabel("UMAP1")
ax.set_ylabel("UMAP2")
fig.tight_layout()
out_png = _unique_output("umap.png")
fig.savefig(out_png, dpi=160)
plt.close(fig)
return out_png
# recolor UMAP given obs column
def recolor_umap(obs_col, coords, h5ad_path):
# make sure inputs are valid
if coords is None or h5ad_path is None:
raise gr.Error("Run embeddings first to compute UMAP.")
coords = np.asarray(coords)
if coords.ndim != 2 or coords.shape[1] != 2:
raise gr.Error(f"UMAP coordinates look wrong, shape = {coords.shape}. Please recompute.")
# handle no-coloring option
if obs_col == OBS_NONE_OPTION:
out_png = draw_uncolored(coords)
return str(out_png.resolve())
# read obs column
try:
adata = sc.read_h5ad(h5ad_path, backed="r")
series = adata.obs[obs_col]
n = series.shape[0]
if n != coords.shape[0]:
gr.Warning(f"Length mismatch: obs has {n} rows, UMAP has {coords.shape[0]}. Using minimum length.")
m = min(n, coords.shape[0])
series = series.iloc[:m]
coords = coords[:m]
except Exception as e:
raise gr.Error(f"Failed to read .obs column '{obs_col}': {e}")
# sanitize values
s = series.copy()
numeric_candidate = pd.to_numeric(s, errors="coerce")
n_numeric_valid = int(np.isfinite(numeric_candidate.astype(float)).sum())
n_total = int(len(s))
# plot numerical labels
if n_numeric_valid >= max(5, 0.5 * n_total):
# check for sufficient numeric values or constant values
vals = pd.to_numeric(s, errors="coerce").astype(float).values
mask = np.isfinite(vals)
if mask.sum() < max(10, 0.1 * len(vals)):
gr.Warning(f"Too few finite numeric values in '{obs_col}'. Showing uncolored UMAP.")
return draw_uncolored(f"{obs_col}: insufficient numeric values")
if np.nanmax(vals[mask]) == np.nanmin(vals[mask]):
gr.Info(f"'{obs_col}' is constant. Showing uncolored UMAP.")
return draw_uncolored(f"{obs_col}: constant")
# draw with colorbar
fig = plt.figure(figsize=(5.5, 5.0))
ax = fig.add_subplot(111)
scatt = ax.scatter(coords[mask, 0], coords[mask, 1], s=3, alpha=0.85, c=vals[mask])
fig.colorbar(scatt, ax=ax, shrink=0.7, label=obs_col)
if (~mask).any():
ax.scatter(coords[~mask, 0], coords[~mask, 1], s=3, alpha=0.25)
ax.set_title(f"Tx1-70M embeddings colored by {obs_col}")
ax.set_xlabel("UMAP1")
ax.set_ylabel("UMAP2")
fig.tight_layout()
out_png = _unique_output("umap.png")
fig.savefig(out_png, dpi=160)
plt.close(fig)
return str(out_png.resolve())
# categorical coloring
else:
# check for too many or too few categories
cats = s.astype(str).fillna("NA").values
uniq = pd.unique(cats)
n_cat = len(uniq)
if n_cat > MAX_CATEGORIES:
gr.Warning(f"'{obs_col}' has too many categories. Showing uncolored UMAP.")
out_png = draw_uncolored(coords, f"{obs_col}: {n_cat} categories")
return str(out_png.resolve())
if n_cat <= 1:
gr.Info(f"'{obs_col}' has a single category. Showing uncolored UMAP.")
out_png = draw_uncolored(coords, f"{obs_col}: 1 category")
return str(out_png.resolve())
# draw with legend
fig = plt.figure(figsize=(5.5, 5.0))
ax = fig.add_subplot(111)
for cat in sorted(map(str, uniq)):
mask = (cats == cat)
ax.scatter(coords[mask, 0], coords[mask, 1], s=3, alpha=0.85, label=cat)
ax.legend(markerscale=3, fontsize=8, loc="best", frameon=True, ncol=1)
ax.set_title(f"Tx1-70M embeddings colored by {obs_col}")
ax.set_xlabel("UMAP1")
ax.set_ylabel("UMAP2")
fig.tight_layout()
out_png = _unique_output("umap.png")
fig.savefig(out_png, dpi=160)
plt.close(fig)
return str(out_png.resolve())
# custom callback to report progress to Gradio
class GradioProgressCallback(Callback):
def __init__(self, progress, total_batches, start=0.25, end=0.75):
self.progress = progress
self.total = max(1, int(total_batches))
self.seen = 0
self.start = start
self.end = end
def predict_batch_end(self, state, logger):
self.seen += 1
frac = self.start + (self.end - self.start) * (self.seen / self.total)
self.progress(frac, desc=f"computing Tx1 embeddings ({self.seen} / {self.total} batches)")
# compute embeddings
def _embed(adata_bytes, layer_name, feature_col, use_symbols, progress):
# retrieve AnnData from bytes
progress(0.05, desc="loading AnnData")
with tempfile.TemporaryDirectory() as td:
# persist to a temporary file
fpath = Path(td) / "input.h5ad"
with open(fpath, "wb") as f:
f.write(adata_bytes)
# read in backed mode first
adata_backed = sc.read_h5ad(str(fpath), backed="r")
limit = min(adata_backed.n_obs, 100000)
if adata_backed.n_obs > 100000:
gr.Warning("AnnData has >100K cells. Loading only the first 100K cells.")
# load into memory, subsetting if needed
adata = adata_backed[:limit, :].to_memory()
adata.var = adata.var.reset_index(drop=False, names="index")
try:
adata_backed.file.close()
except Exception:
pass
# free up space
del adata_backed
gc.collect()
# validate layer
if layer_name and layer_name not in adata.layers:
raise gr.Error(f"Layer '{layer_name}' not found. Available: {list(adata.layers.keys())}")
# validate feature column
if feature_col not in adata.var.columns:
raise gr.Error(f"Feature column '{feature_col}' not found. Available: {list(adata.var.columns)}")
# symbol conversion if requested
if use_symbols:
# try direct mapping first
col = adata.var[feature_col].astype(str).str.strip()
direct = col.map(SYMBOL_TO_ENSEMBL)
# try case-insensitive fallback
need_fallback = direct.isna()
if need_fallback.any():
upper_mapped = col[need_fallback].str.upper().map(SYMBOL_TO_ENSEMBL_UCASE)
direct.loc[need_fallback] = upper_mapped
# if any symbols map to multiple, warn and take the first
ambiguous_mask = direct.apply(lambda x: isinstance(x, (list, tuple)) and len(x) > 1 if pd.notna(x) else False)
n_ambiguous = int(ambiguous_mask.sum())
if n_ambiguous > 0:
gr.Warning(f"{n_ambiguous} symbol(s) mapped to multiple Ensembl IDs; selecting first mappings.")
direct.loc[ambiguous_mask] = direct.loc[ambiguous_mask].apply(lambda x: x[0])
# convert everything to string
direct = direct.apply(lambda x: x[0] if isinstance(x, (list, tuple)) and len(x) >= 1 else x)
# report mapping quality
n_mapped = int(direct.notna().sum())
n_total = int(len(direct))
gr.Info(f"Gene symbol conversion: mapped {n_mapped} / {n_total} ({n_mapped / max(1, n_total):.1%}).")
if n_mapped == 0:
raise gr.Error("Could not map any gene symbols to Ensembl IDs. Please check the column or turn off the symbol checkbox.")
# create a new column with converted IDs
adata.var["ensembl_from_symbol"] = direct.astype(str)
# drop unmapped rows
before = adata.n_vars
adata = adata[:, adata.var["ensembl_from_symbol"].notna()].copy()
after = adata.n_vars
if after < before:
gr.Warning(f"Dropped {before - after} genes that did not map.")
# handle duplicate Ensembl IDs by keeping the first occurrence
dup_mask = adata.var.duplicated(subset=["ensembl_from_symbol"], keep="first")
n_dups = int(dup_mask.sum())
if n_dups > 0:
gr.Warning(f"Found {n_dups} duplicate Ensembl IDs after mapping; keeping the first occurrence.")
adata = adata[:, ~dup_mask].copy()
# from here on, use the converted column as the gene id key
feature_col = "ensembl_from_symbol"
# check for Ensembl IDs in feature column
if not adata.var[feature_col].str.startswith("ENSG").any():
raise gr.Error(f"Feature column '{feature_col}' does not appear to contain human Ensembl gene IDs. If the column contains gene symbols, use the checkbox.")
# load model
progress(0.15, desc="loading model")
model, vocab, model_config, collator_config = ComposerTX.from_hf(
"tahoebio/TahoeX1",
"70m",
return_gene_embeddings=False
)
# prepare AnnData
progress(0.20, desc="preparing AnnData")
gene_id_key = feature_col
adata.var["id_in_vocab"] = [vocab[gene] if gene in vocab else -1 for gene in adata.var[gene_id_key]]
gene_ids_in_vocab = np.array(adata.var["id_in_vocab"])
num_matches = np.sum(gene_ids_in_vocab >= 0)
frac_matches = num_matches / len(gene_ids_in_vocab)
gr.Info(f"Matched {num_matches} / {len(gene_ids_in_vocab)} genes to vocabulary.")
if frac_matches < 0.5:
gr.Warning(f"Only {frac_matches:.1%} of genes matched to vocabulary. Embeddings may be poor.")
adata = adata[:, adata.var["id_in_vocab"] >= 0]
genes = adata.var[gene_id_key].tolist()
gene_ids = np.array([vocab[gene] for gene in genes], dtype=int)
# create data loader
progress(0.22, desc="creating data loader")
count_matrix = _pick_layer(adata, layer_name)
dataset = CountDataset(
count_matrix,
gene_ids,
cls_token_id=vocab["<cls>"],
pad_value=collator_config["pad_value"],
)
collate_fn = DataCollator(
vocab=vocab,
drug_to_id_path=collator_config.get("drug_to_id_path", None),
do_padding=collator_config.get("do_padding", True),
unexp_padding=False,
pad_token_id=collator_config.pad_token_id,
pad_value=collator_config.pad_value,
do_mlm=False,
do_binning=collator_config.get("do_binning", True),
log_transform=collator_config.get("log_transform", False),
target_sum=collator_config.get("target_sum"),
mlm_probability=collator_config.mlm_probability,
mask_value=collator_config.mask_value,
max_length=2048,
sampling=collator_config.sampling,
num_bins=collator_config.get("num_bins", 51),
right_binning=collator_config.get("right_binning", False),
keep_first_n_tokens=collator_config.get("keep_first_n_tokens", 1),
use_chem_token=collator_config.get("use_chem_token", False),
)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=128,
collate_fn=collate_fn,
shuffle=False,
drop_last=False,
num_workers=0,
pin_memory=False
)
# create trainer
cb = GradioProgressCallback(progress, total_batches=len(loader))
trainer = Trainer(
model=model,
device="gpu",
device_train_microbatch_size="auto",
callbacks=[cb]
)
# run inference
predictions = trainer.predict(loader, return_outputs=True)
# aggregate embeddings
progress(0.78, desc="aggregating embeddings")
n_cells = len(dataset)
d_model = model_config.d_model
cell_array = np.empty((n_cells, d_model), dtype=np.float32)
write_ptr = 0
for out in predictions:
batch_emb = out["cell_emb"].detach().to("cpu").float().numpy()
bsz = batch_emb.shape[0]
cell_array[write_ptr:write_ptr+bsz] = batch_emb
write_ptr += bsz
# normalize
norms = np.linalg.norm(cell_array, axis=1, keepdims=True)
np.divide(cell_array, np.clip(norms, 1e-8, None), out=cell_array)
# attach to AnnData
adata.obsm[EMB_KEY] = cell_array
# hand back small metadata for UI refresh
layers = list(adata.layers.keys())
var_choices = _summarize_columns(adata.var)
obs_choices = _summarize_columns(adata.obs)
# serialize AnnData back to bytes for CPU side
with tempfile.TemporaryDirectory() as td2:
outp = Path(td2) / "tmp.h5ad"
adata.write(outp, compression="gzip")
with open(outp, "rb") as f:
adata_persisted = f.read()
# free up space
del adata
torch.cuda.empty_cache()
gc.collect()
# return embeddings and metadata
return cell_array, layers, var_choices, obs_choices, adata_persisted
# processing pipeline given user inputs
def run_pipeline(fileobj, layer_choice, var_choice, use_symbols, progress=gr.Progress(track_tqdm=False)):
# make sure user inputs exist
if fileobj is None:
raise gr.Error("Please upload an .h5ad file.")
if var_choice is None:
raise gr.Error("Please select a .var column.")
# read upload file to bytes so the GPU function can load it
progress(0.02, desc="reading AnnData")
with open(fileobj.name, "rb") as f:
adata_bytes = f.read()
# compute embeddings on GPU
E, layers, var_choices, obs_choices, adata_with_emb_bytes = _embed(
adata_bytes=adata_bytes,
layer_name=(None if layer_choice in [None, "", "<use .X>"] else layer_choice),
feature_col=(None if var_choice in [None, ""] else var_choice),
use_symbols=use_symbols,
progress=progress
)
# rebuild AnnData on CPU
with tempfile.TemporaryDirectory() as td:
tmp_in = Path(td) / "with_emb.h5ad"
with open(tmp_in, "wb") as f:
f.write(adata_with_emb_bytes)
adata = sc.read_h5ad(tmp_in, backed=None)
# compute UMAP
progress(0.80, desc="computing UMAP")
coords = _compute_umap_from_emb(E)
adata.obsm["X_umap"] = coords
# plot UMAP (no coloring by default)
progress(0.90, desc="plotting UMAP")
fig = plt.figure(figsize=(5.5, 5.0))
ax = fig.add_subplot(111)
ax.scatter(coords[:, 0], coords[:, 1], s=3, alpha=0.75)
ax.set_title("Tx1-70M embeddings")
ax.set_xlabel("UMAP1")
ax.set_ylabel("UMAP2")
fig.tight_layout()
umap_png = _unique_output("umap.png")
fig.savefig(umap_png, dpi=160)
plt.close(fig)
# enable coloring dropdown
update_obs_dd = gr.Dropdown(choices=[OBS_NONE_OPTION] + obs_choices, value=OBS_NONE_OPTION, interactive=True)
# save other outputs and return paths
progress(0.95, desc="saving outputs")
parquet_path, h5ad_path = _save_outputs(adata, E)
progress(1.00, desc="finished!")
return str(umap_png.resolve()), str(parquet_path.resolve()), str(h5ad_path.resolve()), ["<use .X>"] + layers, var_choices, update_obs_dd, coords, str(h5ad_path.resolve())
# specify app layout
css = """
div#tahoe-logo {
margin-top: 10px;
margin-bottom: 10px;
}
#logo-light {display: none;}
@media (prefers-color-scheme: dark) {
#logo-dark {display: none;}
#logo-light {display: block;}
}
"""
with gr.Blocks(title=APP_TITLE, css=css) as demo:
# state variables to store UMAP coordinates and AnnData path
coords_state = gr.State()
h5ad_state = gr.State()
# header
with gr.Row(elem_id="tahoe-logo", equal_height=True):
logo_light = gr.Image(
value="tahoe-white-logo.png",
height=50,
show_label=False,
container=False,
interactive=False,
elem_id="logo-light",
show_share_button=False,
show_fullscreen_button=False,
show_download_button=False,
scale=0
)
logo_dark = gr.Image(
value="tahoe-navy-logo.png",
height=50,
show_label=False,
container=False,
interactive=False,
elem_id="logo-dark",
show_share_button=False,
show_fullscreen_button=False,
show_download_button=False,
scale=0
)
gr.Markdown(f"# {APP_TITLE}\n{APP_DESC}")
# file upload block
f_in = gr.File(label="Upload .h5ad", file_types=[".h5ad"], type="filepath")
# dropdown block
with gr.Row(equal_height=True):
layer_dd = gr.Dropdown(choices=["<use .X>"], value="<use .X>", label="Layer to use (default: .X)", scale=1)
with gr.Column(scale=1):
var_dd = gr.Dropdown(choices=[], value=None, label="Name of .var column with Ensembl gene IDs (or gene symbols)")
use_symbols_chk = gr.Checkbox(label="Selected .var column contains gene symbols (attempt conversion to Ensembl IDs)", value=False)
# run button
run_btn = gr.Button("Compute Embeddings + UMAP", variant="primary")
# UMAP preview block
with gr.Row():
umap_img = gr.Image(label="UMAP preview", interactive=False)
# UMAP coloring block
with gr.Row():
obs_dd = gr.Dropdown(choices=[], value=None, label="Name of .obs column to color UMAP by", interactive=False)
# file download block
with gr.Row():
emb_parquet = gr.DownloadButton(label="Download embeddings (.parquet)")
adata_with_emb = gr.DownloadButton(label="Download AnnData with embeddings in .obsm (.h5ad)")
# when file changes, refresh dropdowns
f_in.change(
ensure_dropdowns,
inputs=[f_in],
outputs=[layer_dd, var_dd],
queue=False
)
# run pipeline on button click
evt = run_btn.click(
run_pipeline,
inputs=[f_in, layer_dd, var_dd, use_symbols_chk],
outputs=[umap_img, emb_parquet, adata_with_emb, layer_dd, var_dd, obs_dd, coords_state, h5ad_state],
queue=True
)
# refresh dropdowns after run
evt.then(
ensure_dropdowns,
inputs=[f_in],
outputs=[layer_dd, var_dd],
queue=False
)
# wire UMAP recoloring
obs_dd.change(recolor_umap, inputs=[obs_dd, coords_state, h5ad_state], outputs=[umap_img], queue=False)
if __name__ == "__main__":
demo.launch(allowed_paths=[str(OUTPUT_DIR.resolve())], max_file_size="5gb")
|