Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
·
5b879f4
1
Parent(s):
510f4a2
working build
Browse files- .gitignore +22 -0
- app.py +62 -0
- requirements.txt +4 -0
- test.py +10 -0
.gitignore
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*.pyo
|
| 5 |
+
*.pyd
|
| 6 |
+
*.egg-info/
|
| 7 |
+
dist/
|
| 8 |
+
build/
|
| 9 |
+
*.whl
|
| 10 |
+
|
| 11 |
+
# Virtual Environment
|
| 12 |
+
venv/
|
| 13 |
+
env/
|
| 14 |
+
ENV/
|
| 15 |
+
.venv/
|
| 16 |
+
.env/
|
| 17 |
+
|
| 18 |
+
# Jupyter Notebook
|
| 19 |
+
.ipynb_checkpoints
|
| 20 |
+
|
| 21 |
+
# Gradio specific
|
| 22 |
+
gradio_cache/
|
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
import json
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
|
| 6 |
+
def get_tokenizer_names(model_name):
|
| 7 |
+
try:
|
| 8 |
+
# First attempt: Try to get names from model_index.json
|
| 9 |
+
model_info_path = hf_hub_download(model_name, filename="model_index.json")
|
| 10 |
+
with open(model_info_path, "r") as f:
|
| 11 |
+
model_info = json.load(f)
|
| 12 |
+
|
| 13 |
+
# Extract tokenizer class names from the JSON
|
| 14 |
+
tokenizer_1_class = model_info.get("tokenizer", ["", "Unknown"])[1]
|
| 15 |
+
tokenizer_2_class = model_info.get("tokenizer_2", ["", "Unknown"])[1]
|
| 16 |
+
|
| 17 |
+
return tokenizer_1_class, tokenizer_2_class
|
| 18 |
+
|
| 19 |
+
except Exception:
|
| 20 |
+
# Second attempt: Fall back to original method
|
| 21 |
+
try:
|
| 22 |
+
model_info = AutoTokenizer.from_pretrained(model_name, subfolder="tokenizer", _from_auto=True)
|
| 23 |
+
config = model_info.init_kwargs
|
| 24 |
+
return config.get('tokenizer_class', 'Unknown'), config.get('tokenizer_2_class', 'Unknown')
|
| 25 |
+
except Exception:
|
| 26 |
+
return "Unknown", "Unknown"
|
| 27 |
+
|
| 28 |
+
def count_tokens(model_name, text):
|
| 29 |
+
# Load the tokenizers from the specified model
|
| 30 |
+
tokenizer_1 = AutoTokenizer.from_pretrained(f"{model_name}", subfolder="tokenizer")
|
| 31 |
+
tokenizer_2 = AutoTokenizer.from_pretrained(f"{model_name}", subfolder="tokenizer_2")
|
| 32 |
+
|
| 33 |
+
# Get tokenizer names
|
| 34 |
+
tokenizer_1_name, tokenizer_2_name = get_tokenizer_names(model_name)
|
| 35 |
+
|
| 36 |
+
# Tokenize the input text
|
| 37 |
+
tokens_1 = tokenizer_1.tokenize(text)
|
| 38 |
+
tokens_2 = tokenizer_2.tokenize(text)
|
| 39 |
+
|
| 40 |
+
# Count the tokens
|
| 41 |
+
count_1 = len(tokens_1)
|
| 42 |
+
count_2 = len(tokens_2)
|
| 43 |
+
|
| 44 |
+
return f"{tokenizer_1_name}: {count_1} tokens", f"{tokenizer_2_name}: {count_2} tokens"
|
| 45 |
+
|
| 46 |
+
# Create a Gradio interface
|
| 47 |
+
iface = gr.Interface(
|
| 48 |
+
fn=count_tokens,
|
| 49 |
+
inputs=[
|
| 50 |
+
gr.Textbox(label="Model Name", placeholder="e.g., black-forest-labs/FLUX.1-dev"),
|
| 51 |
+
gr.Textbox(label="Text", placeholder="Enter text here...")
|
| 52 |
+
],
|
| 53 |
+
outputs=[
|
| 54 |
+
gr.Textbox(label="Tokenizer 1"),
|
| 55 |
+
gr.Textbox(label="Tokenizer 2")
|
| 56 |
+
],
|
| 57 |
+
title="Token Counter",
|
| 58 |
+
description="Enter a Hugging Face model name and text to count tokens using the model's tokenizers."
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Launch the app
|
| 62 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
protobuf
|
| 4 |
+
sentencepiece
|
test.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_download
|
| 2 |
+
|
| 3 |
+
# Replace "model_name" with the actual model name
|
| 4 |
+
model_info_path = hf_hub_download("shuttleai/shuttle-3-diffusion", filename="model_index.json")
|
| 5 |
+
|
| 6 |
+
# Now you can read the contents of the file
|
| 7 |
+
with open(model_info_path, "r") as f:
|
| 8 |
+
model_info_content = f.read()
|
| 9 |
+
|
| 10 |
+
print(model_info_content)
|