Spaces:
Sleeping
Sleeping
| import json | |
| import os | |
| from functools import lru_cache | |
| from typing import Mapping | |
| import gradio as gr | |
| from huggingface_hub import HfFileSystem, hf_hub_download | |
| from imgutils.data import ImageTyping, load_image | |
| from natsort import natsorted | |
| from onnx_ import _open_onnx_model | |
| from preprocess import _img_encode | |
| hfs = HfFileSystem() | |
| def open_model_from_repo(repository, model): | |
| runtime = _open_onnx_model(hf_hub_download(repository, f'{model}/model.onnx')) | |
| with open(hf_hub_download(repository, f'{model}/meta.json'), 'r') as f: | |
| labels = json.load(f)['labels'] | |
| return runtime, labels | |
| class Classification: | |
| def __init__(self, title: str, repository: str, default_model=None, imgsize: int = 384): | |
| self.title = title | |
| self.repository = repository | |
| self.models = natsorted([ | |
| os.path.dirname(os.path.relpath(file, self.repository)) | |
| for file in hfs.glob(f'{self.repository}/*/model.onnx') | |
| ]) | |
| self.default_model = default_model or self.models[0] | |
| self.imgsize = imgsize | |
| def _open_onnx_model(self, model): | |
| return open_model_from_repo(self.repository, model) | |
| def _gr_classification(self, image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]: | |
| image = load_image(image, mode='RGB') | |
| input_ = _img_encode(image, size=(size, size))[None, ...] | |
| model, labels = self._open_onnx_model(model_name) | |
| output, = model.run(['output'], {'input': input_}) | |
| values = dict(zip(labels, map(lambda x: x.item(), output[0]))) | |
| return values | |
| def create_gr(self): | |
| with gr.Tab(self.title): | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr_input_image = gr.Image(type='pil', label='Original Image') | |
| gr_model = gr.Dropdown(self.models, value=self.default_model, label='Model') | |
| gr_infer_size = gr.Slider(224, 640, value=384, step=32, label='Infer Size') | |
| gr_submit = gr.Button(value='Submit', variant='primary') | |
| with gr.Column(): | |
| gr_output = gr.Label(label='Classes') | |
| gr_submit.click( | |
| self._gr_classification, | |
| inputs=[gr_input_image, gr_model, gr_infer_size], | |
| outputs=[gr_output], | |
| ) | |