Spaces:
Sleeping
Sleeping
| import os | |
| import fitz # PyMuPDF | |
| from paddleocr import PPStructure | |
| from pdf2image import convert_from_path | |
| import numpy as np | |
| import json | |
| import re | |
| import spacy | |
| from spacy.matcher import Matcher | |
| from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification | |
| import gradio as gr | |
| from tqdm.auto import tqdm | |
| import os | |
| # Ensure Poppler is available | |
| os.system("apt-get update -y && apt-get install -y poppler-utils") | |
| # --- Initialization --- | |
| structure_engine = PPStructure(table=True, ocr=True, layout=True) | |
| nlp = spacy.load("en_core_web_sm") | |
| matcher = Matcher(nlp.vocab) | |
| # Regex & matcher setup | |
| date_pattern = r"\d{2}-[A-Za-z]{3}-\d{2}|\d{2}\.\d{2}\.\d{2}" | |
| party_pattern = r"M/s [A-Za-z\s&-]+(?:Consortium)?" | |
| pattern = [{"LOWER": "claimant"}, {"IS_PUNCT": True, "OP": "?"}, {"ENT_TYPE": "ORG"}] | |
| matcher.add("CLAIMANT", [pattern]) | |
| # Load Legal-BERT pipelines | |
| ner_model = "nlpaueb/legal-bert-base-uncased" | |
| token_model = AutoModelForTokenClassification.from_pretrained(ner_model) | |
| tokenizer = AutoTokenizer.from_pretrained(ner_model) | |
| ner_pipeline = pipeline("ner", model=token_model, tokenizer=tokenizer, aggregation_strategy="simple") | |
| clf_pipeline = pipeline("text-classification", model=ner_model) | |
| # Helper functions | |
| def extract_text_from_pdf(pdf_path): | |
| doc = fitz.open(pdf_path) | |
| pages = [] | |
| for i in range(len(doc)): | |
| page = doc[i] | |
| pages.append({"page": i + 1, "text": page.get_text("text") or ""}) | |
| doc.close() | |
| return pages | |
| def extract_content_from_images(pdf_path): | |
| images = convert_from_path(pdf_path) | |
| results = [] | |
| for i, img in enumerate(images, start=1): | |
| img_np = np.array(img) | |
| res = structure_engine(img_np) | |
| text_lines, tables = [], [] | |
| for block in res: | |
| if block['type'] == 'text': | |
| text_lines += [line['text'] for line in block['res'] if 'text' in line] | |
| elif block['type'] == 'table' and 'html' in block['res']: | |
| tables.append(block['res']['html']) | |
| results.append({"page": i, "ocr_text": " ".join(text_lines), "tables_html": tables}) | |
| return results | |
| def extract_metadata(text): | |
| meta = {"dates": [], "parties": [], "claimants": [], "tribunals": [], "relationships": [], "clauses": []} | |
| # Regex | |
| meta['dates'] = re.findall(date_pattern, text) | |
| meta['parties'] = re.findall(party_pattern, text) | |
| # SpaCy | |
| doc = nlp(text) | |
| for ent in doc.ents: | |
| if ent.label_ == 'ORG' and ent.text not in meta['parties']: | |
| meta['parties'].append(ent.text) | |
| if ent.label_ == 'GPE': | |
| meta['tribunals'].append(ent.text) | |
| for match_id, start, end in matcher(doc): | |
| meta['claimants'].append(doc[start:end].text) | |
| # Legal-BERT NER | |
| for ent in ner_pipeline(text): | |
| grp = ent['entity_group'] | |
| if grp in ('ORG','PARTY') and ent['word'] not in meta['parties']: | |
| meta['parties'].append(ent['word']) | |
| if grp == 'GPE' and ent['word'] not in meta['tribunals']: | |
| meta['tribunals'].append(ent['word']) | |
| # Clause classification | |
| for sent in text.split('. '): | |
| if len(sent) < 10: continue | |
| try: | |
| res = clf_pipeline(sent)[0] | |
| if res['score'] > 0.7: | |
| meta['clauses'].append({'type': res['label'], 'text': sent}) | |
| except: | |
| pass | |
| return meta | |
| def process_pdf(file_obj): | |
| # Save uploaded file | |
| pdf_path = file_obj.name | |
| # 1. Text | |
| text_pages = extract_text_from_pdf(pdf_path) | |
| # 2. OCR & tables | |
| img_content = extract_content_from_images(pdf_path) | |
| # 3. Metadata | |
| metadata = [] | |
| for page in text_pages: | |
| metadata.append({"page": page['page'], "metadata": extract_metadata(page['text'])}) | |
| # Combine | |
| output = { | |
| "text_pages": text_pages, | |
| "image_content": img_content, | |
| "metadata": metadata | |
| } | |
| return output | |
| # Gradio Interface | |
| iface = gr.Interface( | |
| fn=process_pdf, | |
| inputs=gr.File(label="Upload PDF", file_types=['.pdf']), | |
| outputs=gr.JSON(label="Extraction Result"), | |
| title="PDF OCR & Metadata Extractor", | |
| description="Upload a PDF, wait for processing, and view structured JSON output including text, OCR, tables, and metadata." | |
| ) | |
| if __name__ == '__main__': | |
| iface.launch() | |