Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
a189727
1
Parent(s):
78b8054
initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- DEFAULT_HF_MODEL_REPO +1 -0
- DEFAULT_MODEL +1 -0
- LICENSE +21 -0
- README.md +243 -7
- TODOS +1 -0
- app.py +760 -0
- assets/.DS_Store +0 -0
- conf/c2f.yml +14 -0
- conf/generated/cat/c2f.yml +15 -0
- conf/generated/cat/coarse.yml +8 -0
- conf/generated/cat/interface.yml +6 -0
- conf/generated/cat10/c2f.yml +15 -0
- conf/generated/cat10/coarse.yml +8 -0
- conf/generated/cat10/interface.yml +6 -0
- conf/generated/ivo/c2f.yml +15 -0
- conf/generated/ivo/coarse.yml +8 -0
- conf/generated/ivo/interface.yml +6 -0
- conf/generated/lazaro-ros-sep/c2f.yml +15 -0
- conf/generated/lazaro-ros-sep/coarse.yml +8 -0
- conf/generated/lazaro-ros-sep/interface.yml +6 -0
- conf/generated/lazaro-ros/c2f.yml +15 -0
- conf/generated/lazaro-ros/coarse.yml +8 -0
- conf/generated/lazaro-ros/interface.yml +6 -0
- conf/generated/le-poisson-steve/c2f.yml +15 -0
- conf/generated/le-poisson-steve/coarse.yml +8 -0
- conf/generated/le-poisson-steve/interface.yml +6 -0
- conf/generated/march-31/c2f.yml +15 -0
- conf/generated/march-31/coarse.yml +8 -0
- conf/generated/march-31/interface.yml +6 -0
- conf/generated/sax-new/c2f.yml +15 -0
- conf/generated/sax-new/coarse.yml +8 -0
- conf/generated/sax-new/interface.yml +6 -0
- conf/generated/saxophone/c2f.yml +15 -0
- conf/generated/saxophone/coarse.yml +8 -0
- conf/generated/saxophone/interface.yml +6 -0
- conf/interface.yml +10 -0
- conf/lora/lora-s2s.yml +27 -0
- conf/lora/lora.yml +22 -0
- conf/salad_bowl.yml +0 -0
- conf/vampnet.yml +49 -0
- hello.py +48 -0
- requirements.txt +11 -0
- scratch/convert_to_wav.sh +1 -0
- scratch/rms_mask.txt +14 -0
- scratch/separate_folder.sh +1 -0
- scripts/exp/eval.py +110 -0
- scripts/exp/experiment.py +254 -0
- scripts/exp/export.py +75 -0
- scripts/exp/fine_tune.py +87 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
DEFAULT_HF_MODEL_REPO
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
hugggof/vampnet
|
DEFAULT_MODEL
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
default
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 Hugo Flores García and Prem Seetharaman
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
CHANGED
|
@@ -1,13 +1,249 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: salad bowl (vampnet)
|
| 3 |
+
emoji: 🥗
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.23.2
|
| 8 |
+
python_version: 3.11
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
| 11 |
+
license: cc-by-nc-4.0
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# VampNet
|
| 15 |
+
|
| 16 |
+
# Table of contents
|
| 17 |
+
|
| 18 |
+
- [setting up](#setting-up)
|
| 19 |
+
- [programmatic usage](#programmatic-usage)
|
| 20 |
+
- [launching the web app](#launching-the-web-app)
|
| 21 |
+
- [training / fine-tuning](#training--fine-tuning)
|
| 22 |
+
- [training a model](#training-a-model)
|
| 23 |
+
- [debugging training](#debugging-training)
|
| 24 |
+
- [fine-tuning](#fine-tuning)
|
| 25 |
+
- [exporting your model](#exporting-your-model)
|
| 26 |
+
- [unloop](#unloop)
|
| 27 |
+
- [token telephone](#token-telephone)
|
| 28 |
+
- [a note on argbind](#a-note-on-argbind)
|
| 29 |
+
- [take a look at the pretrained models](#take-a-look-at-the-pretrained-models)
|
| 30 |
+
- [licensing for pretrained models](#licensing-for-pretrained-models)
|
| 31 |
+
|
| 32 |
+
## setting up
|
| 33 |
+
|
| 34 |
+
python 3.9-3.11 works well. (for example, using conda)
|
| 35 |
+
```bash
|
| 36 |
+
conda create -n vampnet python=3.9
|
| 37 |
+
conda activate vampnet
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
install VampNet
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
git clone https://github.com/hugofloresgarcia/vampnet.git
|
| 44 |
+
pip install -e ./vampnet
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
## programmatic usage
|
| 48 |
+
|
| 49 |
+
quick start!
|
| 50 |
+
```python
|
| 51 |
+
import random
|
| 52 |
+
import vampnet
|
| 53 |
+
import audiotools as at
|
| 54 |
+
|
| 55 |
+
# load the default vampnet model
|
| 56 |
+
interface = vampnet.interface.Interface.default()
|
| 57 |
+
|
| 58 |
+
# list available finetuned models
|
| 59 |
+
finetuned_model_choices = interface.available_models()
|
| 60 |
+
print(f"available finetuned models: {finetuned_model_choices}")
|
| 61 |
+
|
| 62 |
+
# pick a random finetuned model
|
| 63 |
+
model_choice = random.choice(finetuned_model_choices)
|
| 64 |
+
print(f"choosing model: {model_choice}")
|
| 65 |
+
|
| 66 |
+
# load a finetuned model
|
| 67 |
+
interface.load_finetuned(model_choice)
|
| 68 |
+
|
| 69 |
+
# load an example audio file
|
| 70 |
+
signal = at.AudioSignal("assets/example.wav")
|
| 71 |
+
|
| 72 |
+
# get the tokens for the audio
|
| 73 |
+
codes = interface.encode(signal)
|
| 74 |
+
|
| 75 |
+
# build a mask for the audio
|
| 76 |
+
mask = interface.build_mask(
|
| 77 |
+
codes, signal,
|
| 78 |
+
periodic_prompt=7,
|
| 79 |
+
upper_codebook_mask=3,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# generate the output tokens
|
| 83 |
+
output_tokens = interface.vamp(
|
| 84 |
+
codes, mask, return_mask=False,
|
| 85 |
+
temperature=1.0,
|
| 86 |
+
typical_filtering=True,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# convert them to a signal
|
| 90 |
+
output_signal = interface.decode(output_tokens)
|
| 91 |
+
|
| 92 |
+
# save the output signal
|
| 93 |
+
output_signal.write("scratch/output.wav")
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# Launching the Web app
|
| 98 |
+
You can launch a gradio UI to play with vampnet.
|
| 99 |
+
|
| 100 |
+
```bash
|
| 101 |
+
python app.py
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
# Training / Fine-tuning
|
| 105 |
+
|
| 106 |
+
## Training a model
|
| 107 |
+
|
| 108 |
+
To train a model, run the following script:
|
| 109 |
+
|
| 110 |
+
```bash
|
| 111 |
+
python scripts/exp/train.py --args.load conf/vampnet.yml --save_path /path/to/checkpoints
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
for multi-gpu training, use torchrun:
|
| 115 |
+
|
| 116 |
+
```bash
|
| 117 |
+
torchrun --nproc_per_node gpu scripts/exp/train.py --args.load conf/vampnet.yml --save_path path/to/ckpt
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
You can edit `conf/vampnet.yml` to change the dataset paths or any training hyperparameters.
|
| 121 |
+
|
| 122 |
+
For coarse2fine models, you can use `conf/c2f.yml` as a starting configuration.
|
| 123 |
+
|
| 124 |
+
See `python scripts/exp/train.py -h` for a list of options.
|
| 125 |
+
|
| 126 |
+
## Debugging training
|
| 127 |
+
|
| 128 |
+
To debug training, it's easier to debug with 1 gpu and 0 workers
|
| 129 |
+
|
| 130 |
+
```bash
|
| 131 |
+
CUDA_VISIBLE_DEVICES=0 python -m pdb scripts/exp/train.py --args.load conf/vampnet.yml --save_path /path/to/checkpoints --num_workers 0
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
# Fine-tuning
|
| 135 |
+
|
| 136 |
+
To fine-tune a model, use the script in `scripts/exp/fine_tune.py`
|
| 137 |
+
|
| 138 |
+
for an audio folder
|
| 139 |
+
```bash
|
| 140 |
+
python scripts/exp/fine_tune.py /path/to/audio/folder <fine_tune_name>
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
for multiple files
|
| 144 |
+
```bash
|
| 145 |
+
python scripts/exp/fine_tune.py "/path/to/audio1.mp3 /path/to/audio2/ /path/to/audio3.wav" <fine_tune_name>
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
This creates configuration files for a fine tuning train job. The save_paths will be set to `runs/<fine_tune_name>/coarse` and `runs/<fine_tune_name>/c2f`.
|
| 149 |
+
|
| 150 |
+
launch the coarse job:
|
| 151 |
+
```bash
|
| 152 |
+
python scripts/exp/train.py --args.load conf/generated/<fine_tune_name>/coarse.yml
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
this will save the coarse model to `runs/<fine_tune_name>/coarse/ckpt/best/`.
|
| 156 |
+
|
| 157 |
+
launch the c2f job:
|
| 158 |
+
```bash
|
| 159 |
+
python scripts/exp/train.py --args.load conf/generated/<fine_tune_name>/c2f.yml
|
| 160 |
+
```
|
| 161 |
+
|
| 162 |
+
# Resuming a Training/Finetuning Job from checkpoint.
|
| 163 |
+
|
| 164 |
+
To resume from checkpoint, use the `--resume` flag and the `--save_path` to point to the checkpoint you want to resume from.
|
| 165 |
+
```bash
|
| 166 |
+
python scripts/exp/train.py --args.load conf/generated/steve/coarse.yml --save_path runs/steve/coarse --resume
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
# Exporting your model
|
| 170 |
+
|
| 171 |
+
Once your model has been fine-tuned, you can export it to a HuggingFace model.
|
| 172 |
+
|
| 173 |
+
In order to use your model in `app.py`, you will need to export it to HuggingFace.
|
| 174 |
+
|
| 175 |
+
**NOTE**: In order to export, you will need a [huggingface account](https://huggingface.co/).
|
| 176 |
+
|
| 177 |
+
Now, log in to huggingface using the command line:
|
| 178 |
+
```bash
|
| 179 |
+
huggingface-cli login
|
| 180 |
+
```
|
| 181 |
+
|
| 182 |
+
replace the contents of the file named `./DEFAULT_HF_MODEL_REPO` with your `<HUGGINGFACE_USERNAME>/vampnet`. A model repo will be automatically created for you with `export.py`. The default is `hugggof/vampnet`.
|
| 183 |
+
|
| 184 |
+
for example, if my username is `hugggof`, I would run the following command:`
|
| 185 |
+
```bash
|
| 186 |
+
echo 'hugggof/vampnet' > ./DEFAULT_HF_MODEL_REPO
|
| 187 |
+
```
|
| 188 |
+
|
| 189 |
+
Now, run the following command to export your model (replace `<your_finetuned_model_name>` with the name of your model):
|
| 190 |
+
|
| 191 |
+
```bash
|
| 192 |
+
python scripts/exp/export.py --name <your_finetuned_model_name> --model latest
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+
Once that's done, your model should appear on the list of available models in the gradio interface.
|
| 196 |
+
Simply run `python app.py` and select your model from the dropdown list.
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
# Unloop
|
| 200 |
+
|
| 201 |
+
Make sure you have Max installed on your laptop!
|
| 202 |
+
|
| 203 |
+
**NOTE**: To run unloop (with a GPU-powered server), you will need to install the vampnet repo in both your local machine and your GPU server.
|
| 204 |
+
|
| 205 |
+
## start a vampnet gradio server
|
| 206 |
+
|
| 207 |
+
First, **on your GPU server**, run the gradio server:
|
| 208 |
+
```bash
|
| 209 |
+
python app.py --args.load conf/interface.yml --Interface.device cuda
|
| 210 |
+
```
|
| 211 |
+
This will run a vampnet gradio API on your GPU server. Copy the address. It will be something like `https://127.0.0.1:7860/`.
|
| 212 |
+
|
| 213 |
+
**IMPORTANT** Make sure that this gradio port (by default `7860`) is forwarded to your local machine, where you have Max installed.
|
| 214 |
+
|
| 215 |
+
## start the unloop gradio client
|
| 216 |
+
Now, **on your local machine**, run the unloop gradio client.
|
| 217 |
+
```
|
| 218 |
+
cd unloop
|
| 219 |
+
pip install -r requirements.txt
|
| 220 |
+
python client.py --vampnet_url https://127.0.0.1:7860/ # replace with your gradio server address
|
| 221 |
+
```
|
| 222 |
+
This will start a gradio client that connects to the gradio server running on your GPU server.
|
| 223 |
+
|
| 224 |
+
## start the unloop Max patch
|
| 225 |
+
Now, open the unloop Max patch. It's located at `unloop/max/unloop.maxpat`.
|
| 226 |
+
|
| 227 |
+
In the tape controls, check the heartbeat (`<3`) to make sure the connection to the local gradio client is working.
|
| 228 |
+
|
| 229 |
+
have fun!
|
| 230 |
+
|
| 231 |
+
# Token Telephone
|
| 232 |
+
|
| 233 |
+
Instructions forthcoming, but the sauce is in `token_telephone/tt.py`
|
| 234 |
+
|
| 235 |
+
## A note on argbind
|
| 236 |
+
This repository relies on [argbind](https://github.com/pseeth/argbind) to manage CLIs and config files.
|
| 237 |
+
Config files are stored in the `conf/` folder.
|
| 238 |
+
|
| 239 |
+
### Take a look at the pretrained models
|
| 240 |
+
All the pretrained models (trained by hugo) are stored here: https://huggingface.co/hugggof/vampnet
|
| 241 |
+
|
| 242 |
+
### Licensing for Pretrained Models:
|
| 243 |
+
The weights for the models are licensed [`CC BY-NC-SA 4.0`](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ml). Likewise, any VampNet models fine-tuned on the pretrained models are also licensed [`CC BY-NC-SA 4.0`](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ml).
|
| 244 |
+
|
| 245 |
+
Download the pretrained models from [this link](https://zenodo.org/record/8136629). Then, extract the models to the `models/` folder.
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
|
TODOS
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[ ] add sketch2sound finetuning
|
app.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import yaml
|
| 4 |
+
import time
|
| 5 |
+
import uuid
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import audiotools as at
|
| 9 |
+
import argbind
|
| 10 |
+
import shutil
|
| 11 |
+
import torch
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
from pyharp.core import build_endpoint, ModelCard
|
| 14 |
+
from pyharp.labels import OutputLabel, LabelList
|
| 15 |
+
from pyharp.media.audio import save_audio
|
| 16 |
+
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from vampnet.interface import Interface, signal_concat
|
| 19 |
+
from vampnet import mask as pmask
|
| 20 |
+
|
| 21 |
+
device="cpu"
|
| 22 |
+
print(f"using device {device}\n"*10)
|
| 23 |
+
|
| 24 |
+
interface = Interface.default()
|
| 25 |
+
init_model_choice = open("DEFAULT_MODEL").read().strip()
|
| 26 |
+
|
| 27 |
+
# load the init model
|
| 28 |
+
interface.load_finetuned(init_model_choice)
|
| 29 |
+
|
| 30 |
+
def to_output(sig):
|
| 31 |
+
return sig.sample_rate, sig.cpu().detach().numpy()[0][0]
|
| 32 |
+
|
| 33 |
+
MAX_DURATION_S = 10
|
| 34 |
+
def load_audio(file):
|
| 35 |
+
print(file)
|
| 36 |
+
if isinstance(file, str):
|
| 37 |
+
filepath = file
|
| 38 |
+
elif isinstance(file, tuple):
|
| 39 |
+
# not a file
|
| 40 |
+
sr, samples = file
|
| 41 |
+
samples = samples / np.iinfo(samples.dtype).max
|
| 42 |
+
return sr, samples
|
| 43 |
+
else:
|
| 44 |
+
filepath = file.name
|
| 45 |
+
sig = at.AudioSignal.salient_excerpt(
|
| 46 |
+
filepath, duration=MAX_DURATION_S
|
| 47 |
+
)
|
| 48 |
+
sig = at.AudioSignal(filepath)
|
| 49 |
+
return to_output(sig)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def load_example_audio():
|
| 53 |
+
return load_audio("./assets/example.wav")
|
| 54 |
+
|
| 55 |
+
from torch_pitch_shift import pitch_shift, get_fast_shifts
|
| 56 |
+
def shift_pitch(signal, interval: int):
|
| 57 |
+
signal.samples = pitch_shift(
|
| 58 |
+
signal.samples,
|
| 59 |
+
shift=interval,
|
| 60 |
+
sample_rate=signal.sample_rate
|
| 61 |
+
)
|
| 62 |
+
return signal
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def onsets(sig: at.AudioSignal, hop_length: int):
|
| 66 |
+
assert sig.batch_size == 1, "batch size must be 1"
|
| 67 |
+
assert sig.num_channels == 1, "mono signals only"
|
| 68 |
+
import librosa
|
| 69 |
+
onset_frame_idxs = librosa.onset.onset_detect(
|
| 70 |
+
y=sig.samples[0][0].detach().cpu().numpy(), sr=sig.sample_rate,
|
| 71 |
+
hop_length=hop_length,
|
| 72 |
+
backtrack=True,
|
| 73 |
+
)
|
| 74 |
+
return onset_frame_idxs
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
@spaces.GPU
|
| 78 |
+
def new_vampnet_mask(self,
|
| 79 |
+
codes,
|
| 80 |
+
onset_idxs,
|
| 81 |
+
width: int = 5,
|
| 82 |
+
periodic_prompt=2,
|
| 83 |
+
upper_codebook_mask=1,
|
| 84 |
+
drop_amt: float = 0.1
|
| 85 |
+
):
|
| 86 |
+
from vampnet.newmask import mask_and, mask_or, onset_mask, periodic_mask, drop_ones, codebook_mask
|
| 87 |
+
mask = mask_and(
|
| 88 |
+
periodic_mask(codes, periodic_prompt, 1, random_roll=False),
|
| 89 |
+
mask_or( # this re-masks the onsets, according to a periodic schedule
|
| 90 |
+
onset_mask(onset_idxs, codes, width=width),
|
| 91 |
+
periodic_mask(codes, periodic_prompt, 1, random_roll=False),
|
| 92 |
+
)
|
| 93 |
+
).int()
|
| 94 |
+
# make sure the onset idxs themselves are unmasked
|
| 95 |
+
# mask = 1 - mask
|
| 96 |
+
mask[:, :, onset_idxs] = 0
|
| 97 |
+
mask = mask.cpu() # debug
|
| 98 |
+
mask = 1-drop_ones(1-mask, drop_amt)
|
| 99 |
+
mask = codebook_mask(mask, upper_codebook_mask)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# save mask as txt (ints)
|
| 103 |
+
np.savetxt("scratch/rms_mask.txt", mask[0].cpu().numpy(), fmt='%d')
|
| 104 |
+
mask = mask.to(self.device)
|
| 105 |
+
return mask[:, :, :]
|
| 106 |
+
|
| 107 |
+
@spaces.GPU
|
| 108 |
+
def mask_preview(periodic_p, n_mask_codebooks, onset_mask_width, dropout):
|
| 109 |
+
# make a mask preview
|
| 110 |
+
codes = torch.zeros((1, 14, 80)).to(device)
|
| 111 |
+
mask = interface.build_mask(
|
| 112 |
+
codes,
|
| 113 |
+
periodic_prompt=periodic_p,
|
| 114 |
+
# onset_mask_width=onset_mask_width,
|
| 115 |
+
_dropout=dropout,
|
| 116 |
+
upper_codebook_mask=n_mask_codebooks,
|
| 117 |
+
)
|
| 118 |
+
# mask = mask.cpu().numpy()
|
| 119 |
+
import matplotlib.pyplot as plt
|
| 120 |
+
plt.clf()
|
| 121 |
+
interface.visualize_codes(mask)
|
| 122 |
+
plt.title("mask preview")
|
| 123 |
+
plt.savefig("scratch/mask-prev.png")
|
| 124 |
+
return "scratch/mask-prev.png"
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
@spaces.GPU
|
| 128 |
+
def _vamp_internal(
|
| 129 |
+
seed, input_audio, model_choice,
|
| 130 |
+
pitch_shift_amt, periodic_p,
|
| 131 |
+
n_mask_codebooks, onset_mask_width,
|
| 132 |
+
dropout, sampletemp, typical_filtering,
|
| 133 |
+
typical_mass, typical_min_tokens, top_p,
|
| 134 |
+
sample_cutoff, stretch_factor, sampling_steps, beat_mask_ms, num_feedback_steps, api=False, harp=False
|
| 135 |
+
):
|
| 136 |
+
if torch.cuda.is_available():
|
| 137 |
+
device = "cuda"
|
| 138 |
+
elif torch.backends.mps.is_available():
|
| 139 |
+
device = "mps"
|
| 140 |
+
else:
|
| 141 |
+
device = "cpu"
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
print("args!")
|
| 145 |
+
print(f"seed: {seed}")
|
| 146 |
+
print(f"input_audio: {input_audio}")
|
| 147 |
+
print(f"model_choice: {model_choice}")
|
| 148 |
+
print(f"pitch_shift_amt: {pitch_shift_amt}")
|
| 149 |
+
print(f"periodic_p: {periodic_p}")
|
| 150 |
+
print(f"n_mask_codebooks: {n_mask_codebooks}")
|
| 151 |
+
print(f"onset_mask_width: {onset_mask_width}")
|
| 152 |
+
print(f"dropout: {dropout}")
|
| 153 |
+
print(f"sampletemp: {sampletemp}")
|
| 154 |
+
print(f"typical_filtering: {typical_filtering}")
|
| 155 |
+
print(f"typical_mass: {typical_mass}")
|
| 156 |
+
print(f"typical_min_tokens: {typical_min_tokens}")
|
| 157 |
+
print(f"top_p: {top_p}")
|
| 158 |
+
print(f"sample_cutoff: {sample_cutoff}")
|
| 159 |
+
print(f"stretch_factor: {stretch_factor}")
|
| 160 |
+
print(f"sampling_steps: {sampling_steps}")
|
| 161 |
+
print(f"api: {api}")
|
| 162 |
+
print(f"beat_mask_ms: {beat_mask_ms}")
|
| 163 |
+
print(f"using device {interface.device}")
|
| 164 |
+
print(f"num feedback steps: {num_feedback_steps}")
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
t0 = time.time()
|
| 168 |
+
interface.to(device)
|
| 169 |
+
print(f"using device {interface.device}")
|
| 170 |
+
_seed = seed if seed > 0 else None
|
| 171 |
+
if _seed is None:
|
| 172 |
+
_seed = int(torch.randint(0, 2**32, (1,)).item())
|
| 173 |
+
at.util.seed(_seed)
|
| 174 |
+
|
| 175 |
+
if input_audio is None:
|
| 176 |
+
raise gr.Error("no input audio received!")
|
| 177 |
+
sr, input_audio = input_audio
|
| 178 |
+
input_audio = input_audio / np.iinfo(input_audio.dtype).max
|
| 179 |
+
|
| 180 |
+
sig = at.AudioSignal(input_audio, sr).to_mono()
|
| 181 |
+
|
| 182 |
+
loudness = sig.loudness()
|
| 183 |
+
sig = interface._preprocess(sig)
|
| 184 |
+
|
| 185 |
+
# reload the model if necessary
|
| 186 |
+
interface.load_finetuned(model_choice)
|
| 187 |
+
|
| 188 |
+
if pitch_shift_amt != 0:
|
| 189 |
+
sig = shift_pitch(sig, pitch_shift_amt)
|
| 190 |
+
|
| 191 |
+
codes = interface.encode(sig)
|
| 192 |
+
|
| 193 |
+
# mask = new_vampnet_mask(
|
| 194 |
+
# interface,
|
| 195 |
+
# codes,
|
| 196 |
+
# onset_idxs=onsets(sig, hop_length=interface.codec.hop_length),
|
| 197 |
+
# width=onset_mask_width,
|
| 198 |
+
# periodic_prompt=periodic_p,
|
| 199 |
+
# upper_codebook_mask=n_mask_codebooks,
|
| 200 |
+
# drop_amt=dropout
|
| 201 |
+
# ).long()
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
mask = interface.build_mask(
|
| 205 |
+
codes,
|
| 206 |
+
sig=sig,
|
| 207 |
+
periodic_prompt=periodic_p,
|
| 208 |
+
onset_mask_width=onset_mask_width,
|
| 209 |
+
_dropout=dropout,
|
| 210 |
+
upper_codebook_mask=n_mask_codebooks,
|
| 211 |
+
)
|
| 212 |
+
if beat_mask_ms > 0:
|
| 213 |
+
# bm = pmask.mask_or(
|
| 214 |
+
# pmask.periodic_mask(
|
| 215 |
+
# codes, periodic_p, random_roll=False
|
| 216 |
+
# ),
|
| 217 |
+
# )
|
| 218 |
+
mask = pmask.mask_and(
|
| 219 |
+
mask, interface.make_beat_mask(
|
| 220 |
+
sig, after_beat_s=beat_mask_ms/1000.,
|
| 221 |
+
)
|
| 222 |
+
)
|
| 223 |
+
mask = pmask.codebook_mask(mask, n_mask_codebooks)
|
| 224 |
+
np.savetxt("scratch/rms_mask.txt", mask[0].cpu().numpy(), fmt='%d')
|
| 225 |
+
|
| 226 |
+
interface.set_chunk_size(10.0)
|
| 227 |
+
|
| 228 |
+
# lord help me
|
| 229 |
+
if top_p is not None:
|
| 230 |
+
if top_p > 0:
|
| 231 |
+
pass
|
| 232 |
+
else:
|
| 233 |
+
top_p = None
|
| 234 |
+
|
| 235 |
+
codes, mask_z = interface.vamp(
|
| 236 |
+
codes, mask,
|
| 237 |
+
batch_size=2,
|
| 238 |
+
feedback_steps=num_feedback_steps,
|
| 239 |
+
_sampling_steps=sampling_steps,
|
| 240 |
+
time_stretch_factor=stretch_factor,
|
| 241 |
+
return_mask=True,
|
| 242 |
+
temperature=sampletemp,
|
| 243 |
+
typical_filtering=typical_filtering,
|
| 244 |
+
typical_mass=typical_mass,
|
| 245 |
+
typical_min_tokens=typical_min_tokens,
|
| 246 |
+
top_p=top_p,
|
| 247 |
+
seed=_seed,
|
| 248 |
+
sample_cutoff=sample_cutoff,
|
| 249 |
+
)
|
| 250 |
+
print(f"vamp took {time.time() - t0} seconds")
|
| 251 |
+
|
| 252 |
+
sig = interface.decode(codes)
|
| 253 |
+
sig = sig.normalize(loudness)
|
| 254 |
+
|
| 255 |
+
import matplotlib.pyplot as plt
|
| 256 |
+
plt.clf()
|
| 257 |
+
# plt.imshow(mask_z[0].cpu().numpy(), aspect='auto
|
| 258 |
+
interface.visualize_codes(mask)
|
| 259 |
+
plt.title("actual mask")
|
| 260 |
+
plt.savefig("scratch/mask.png")
|
| 261 |
+
plt.clf()
|
| 262 |
+
|
| 263 |
+
if harp:
|
| 264 |
+
return sig
|
| 265 |
+
|
| 266 |
+
if not api:
|
| 267 |
+
return to_output(sig[0]), to_output(sig[1]), "scratch/mask.png"
|
| 268 |
+
else:
|
| 269 |
+
return to_output(sig[0]), to_output(sig[1])
|
| 270 |
+
|
| 271 |
+
@spaces.GPU
|
| 272 |
+
def vamp(input_audio,
|
| 273 |
+
sampletemp,
|
| 274 |
+
top_p,
|
| 275 |
+
periodic_p,
|
| 276 |
+
dropout,
|
| 277 |
+
stretch_factor,
|
| 278 |
+
onset_mask_width,
|
| 279 |
+
typical_filtering,
|
| 280 |
+
typical_mass,
|
| 281 |
+
typical_min_tokens,
|
| 282 |
+
seed,
|
| 283 |
+
model_choice,
|
| 284 |
+
n_mask_codebooks,
|
| 285 |
+
pitch_shift_amt,
|
| 286 |
+
sample_cutoff,
|
| 287 |
+
sampling_steps,
|
| 288 |
+
beat_mask_ms,
|
| 289 |
+
num_feedback_steps):
|
| 290 |
+
return _vamp_internal(
|
| 291 |
+
seed=seed,
|
| 292 |
+
input_audio=input_audio,
|
| 293 |
+
model_choice=model_choice,
|
| 294 |
+
pitch_shift_amt=pitch_shift_amt,
|
| 295 |
+
periodic_p=periodic_p,
|
| 296 |
+
n_mask_codebooks=n_mask_codebooks,
|
| 297 |
+
onset_mask_width=onset_mask_width,
|
| 298 |
+
dropout=dropout,
|
| 299 |
+
sampletemp=sampletemp,
|
| 300 |
+
typical_filtering=typical_filtering,
|
| 301 |
+
typical_mass=typical_mass,
|
| 302 |
+
typical_min_tokens=typical_min_tokens,
|
| 303 |
+
top_p=top_p,
|
| 304 |
+
sample_cutoff=sample_cutoff,
|
| 305 |
+
stretch_factor=stretch_factor,
|
| 306 |
+
sampling_steps=sampling_steps,
|
| 307 |
+
beat_mask_ms=beat_mask_ms,
|
| 308 |
+
num_feedback_steps=num_feedback_steps,
|
| 309 |
+
api=False,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
@spaces.GPU
|
| 313 |
+
def api_vamp(input_audio,
|
| 314 |
+
sampletemp, top_p,
|
| 315 |
+
periodic_p,
|
| 316 |
+
dropout,
|
| 317 |
+
stretch_factor,
|
| 318 |
+
onset_mask_width,
|
| 319 |
+
typical_filtering,
|
| 320 |
+
typical_mass,
|
| 321 |
+
typical_min_tokens,
|
| 322 |
+
seed,
|
| 323 |
+
model_choice,
|
| 324 |
+
n_mask_codebooks,
|
| 325 |
+
pitch_shift_amt,
|
| 326 |
+
sample_cutoff,
|
| 327 |
+
sampling_steps,
|
| 328 |
+
beat_mask_ms, num_feedback_steps):
|
| 329 |
+
return _vamp_internal(
|
| 330 |
+
seed=seed,
|
| 331 |
+
input_audio=input_audio,
|
| 332 |
+
model_choice=model_choice,
|
| 333 |
+
pitch_shift_amt=pitch_shift_amt,
|
| 334 |
+
periodic_p=periodic_p,
|
| 335 |
+
n_mask_codebooks=n_mask_codebooks,
|
| 336 |
+
onset_mask_width=onset_mask_width,
|
| 337 |
+
dropout=dropout,
|
| 338 |
+
sampletemp=sampletemp,
|
| 339 |
+
typical_filtering=typical_filtering,
|
| 340 |
+
typical_mass=typical_mass,
|
| 341 |
+
typical_min_tokens=typical_min_tokens,
|
| 342 |
+
top_p=top_p,
|
| 343 |
+
sample_cutoff=sample_cutoff,
|
| 344 |
+
stretch_factor=stretch_factor,
|
| 345 |
+
sampling_steps=sampling_steps,
|
| 346 |
+
beat_mask_ms=beat_mask_ms,
|
| 347 |
+
num_feedback_steps=num_feedback_steps,
|
| 348 |
+
api=True,
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
@spaces.GPU
|
| 352 |
+
def harp_vamp(input_audio, sampletemp, periodic_p, dropout, n_mask_codebooks, model_choice, stretch_factor):
|
| 353 |
+
sig = at.AudioSignal(input_audio).to_mono()
|
| 354 |
+
|
| 355 |
+
input_audio = sig.cpu().detach().numpy()[0][0]
|
| 356 |
+
input_audio = input_audio * np.iinfo(np.int16).max
|
| 357 |
+
input_audio = input_audio.astype(np.int16)
|
| 358 |
+
input_audio = input_audio.reshape(1, -1)
|
| 359 |
+
input_audio = (sig.sample_rate, input_audio)
|
| 360 |
+
|
| 361 |
+
sig = _vamp_internal(
|
| 362 |
+
seed=0,
|
| 363 |
+
input_audio=input_audio,
|
| 364 |
+
model_choice=model_choice,
|
| 365 |
+
pitch_shift_amt=0,
|
| 366 |
+
periodic_p=int(periodic_p),
|
| 367 |
+
n_mask_codebooks=int(n_mask_codebooks),
|
| 368 |
+
onset_mask_width=0,
|
| 369 |
+
dropout=dropout,
|
| 370 |
+
sampletemp=sampletemp,
|
| 371 |
+
typical_filtering=False,
|
| 372 |
+
typical_mass=0.15,
|
| 373 |
+
typical_min_tokens=1,
|
| 374 |
+
top_p=None,
|
| 375 |
+
sample_cutoff=1.0,
|
| 376 |
+
stretch_factor=stretch_factor,
|
| 377 |
+
sampling_steps=36,
|
| 378 |
+
beat_mask_ms=int(0),
|
| 379 |
+
num_feedback_steps=1,
|
| 380 |
+
api=False,
|
| 381 |
+
harp=True,
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
ll = LabelList()
|
| 385 |
+
ll.append(OutputLabel(label='short label', t=0.0, description='longer description'))
|
| 386 |
+
return save_audio(sig.detach().cpu()), ll
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
with gr.Blocks() as demo:
|
| 390 |
+
with gr.Row():
|
| 391 |
+
with gr.Column():
|
| 392 |
+
manual_audio_upload = gr.File(
|
| 393 |
+
label=f"upload some audio (will be randomly trimmed to max of 100s)",
|
| 394 |
+
file_types=["audio"]
|
| 395 |
+
)
|
| 396 |
+
load_example_audio_button = gr.Button("or load example audio")
|
| 397 |
+
|
| 398 |
+
input_audio = gr.Audio(
|
| 399 |
+
label="input audio",
|
| 400 |
+
interactive=False,
|
| 401 |
+
type="numpy",
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
# audio_mask = gr.Audio(
|
| 405 |
+
# label="audio mask (listen to this to hear the mask hints)",
|
| 406 |
+
# interactive=False,
|
| 407 |
+
# type="numpy",
|
| 408 |
+
# )
|
| 409 |
+
|
| 410 |
+
# connect widgets
|
| 411 |
+
load_example_audio_button.click(
|
| 412 |
+
fn=load_example_audio,
|
| 413 |
+
inputs=[],
|
| 414 |
+
outputs=[ input_audio]
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
manual_audio_upload.change(
|
| 418 |
+
fn=load_audio,
|
| 419 |
+
inputs=[manual_audio_upload],
|
| 420 |
+
outputs=[ input_audio]
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
# mask settings
|
| 425 |
+
with gr.Column():
|
| 426 |
+
with gr.Accordion("manual controls", open=True):
|
| 427 |
+
periodic_p = gr.Slider(
|
| 428 |
+
label="periodic prompt",
|
| 429 |
+
minimum=0,
|
| 430 |
+
maximum=13,
|
| 431 |
+
step=1,
|
| 432 |
+
value=7,
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
onset_mask_width = gr.Slider(
|
| 436 |
+
label="onset mask width (multiplies with the periodic mask, 1 step ~= 10milliseconds) does not affect mask preview",
|
| 437 |
+
minimum=0,
|
| 438 |
+
maximum=100,
|
| 439 |
+
step=1,
|
| 440 |
+
value=0, visible=True
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
beat_mask_ms = gr.Slider(
|
| 444 |
+
label="beat mask width (milliseconds) does not affect mask preview",
|
| 445 |
+
minimum=1,
|
| 446 |
+
maximum=200,
|
| 447 |
+
step=1,
|
| 448 |
+
value=0,
|
| 449 |
+
visible=True
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
n_mask_codebooks = gr.Slider(
|
| 453 |
+
label="compression prompt ",
|
| 454 |
+
value=3,
|
| 455 |
+
minimum=1,
|
| 456 |
+
maximum=14,
|
| 457 |
+
step=1,
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
dropout = gr.Slider(
|
| 461 |
+
label="mask dropout",
|
| 462 |
+
minimum=0.0,
|
| 463 |
+
maximum=1.0,
|
| 464 |
+
step=0.01,
|
| 465 |
+
value=0.0
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
num_feedback_steps = gr.Slider(
|
| 469 |
+
label="feedback steps (token telephone) -- turn it up for better timbre/rhythm transfer quality, but it's slower!",
|
| 470 |
+
minimum=1,
|
| 471 |
+
maximum=8,
|
| 472 |
+
step=1,
|
| 473 |
+
value=1
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
preset_dropdown = gr.Dropdown(
|
| 477 |
+
label="preset",
|
| 478 |
+
choices=["timbre transfer", "small variation", "small variation (follow beat)", "medium variation", "medium variation (follow beat)", "large variation", "large variation (follow beat)", "unconditional"],
|
| 479 |
+
value="medium variation"
|
| 480 |
+
)
|
| 481 |
+
def change_preset(preset_dropdown):
|
| 482 |
+
if preset_dropdown == "timbre transfer":
|
| 483 |
+
periodic_p = 2
|
| 484 |
+
n_mask_codebooks = 1
|
| 485 |
+
onset_mask_width = 0
|
| 486 |
+
dropout = 0.0
|
| 487 |
+
beat_mask_ms = 0
|
| 488 |
+
elif preset_dropdown == "small variation":
|
| 489 |
+
periodic_p = 5
|
| 490 |
+
n_mask_codebooks = 4
|
| 491 |
+
onset_mask_width = 0
|
| 492 |
+
dropout = 0.0
|
| 493 |
+
beat_mask_ms = 0
|
| 494 |
+
elif preset_dropdown == "small variation (follow beat)":
|
| 495 |
+
periodic_p = 7
|
| 496 |
+
n_mask_codebooks = 4
|
| 497 |
+
onset_mask_width = 0
|
| 498 |
+
dropout = 0.0
|
| 499 |
+
beat_mask_ms = 50
|
| 500 |
+
elif preset_dropdown == "medium variation":
|
| 501 |
+
periodic_p = 7
|
| 502 |
+
n_mask_codebooks = 4
|
| 503 |
+
onset_mask_width = 0
|
| 504 |
+
dropout = 0.0
|
| 505 |
+
beat_mask_ms = 0
|
| 506 |
+
elif preset_dropdown == "medium variation (follow beat)":
|
| 507 |
+
periodic_p = 13
|
| 508 |
+
n_mask_codebooks = 4
|
| 509 |
+
onset_mask_width = 0
|
| 510 |
+
dropout = 0.0
|
| 511 |
+
beat_mask_ms = 50
|
| 512 |
+
elif preset_dropdown == "large variation":
|
| 513 |
+
periodic_p = 13
|
| 514 |
+
n_mask_codebooks = 4
|
| 515 |
+
onset_mask_width = 0
|
| 516 |
+
dropout = 0.2
|
| 517 |
+
beat_mask_ms = 0
|
| 518 |
+
elif preset_dropdown == "large variation (follow beat)":
|
| 519 |
+
periodic_p = 0
|
| 520 |
+
n_mask_codebooks = 4
|
| 521 |
+
onset_mask_width = 0
|
| 522 |
+
dropout = 0.0
|
| 523 |
+
beat_mask_ms=80
|
| 524 |
+
elif preset_dropdown == "unconditional":
|
| 525 |
+
periodic_p=0
|
| 526 |
+
n_mask_codebooks=1
|
| 527 |
+
onset_mask_width=0
|
| 528 |
+
dropout=0.0
|
| 529 |
+
return periodic_p, n_mask_codebooks, onset_mask_width, dropout, beat_mask_ms
|
| 530 |
+
preset_dropdown.change(
|
| 531 |
+
fn=change_preset,
|
| 532 |
+
inputs=[preset_dropdown],
|
| 533 |
+
outputs=[periodic_p, n_mask_codebooks, onset_mask_width, dropout, beat_mask_ms]
|
| 534 |
+
)
|
| 535 |
+
# preset_dropdown.change(
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
maskimg = gr.Image(
|
| 539 |
+
label="mask image",
|
| 540 |
+
interactive=False,
|
| 541 |
+
type="filepath"
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
with gr.Accordion("extras ", open=False):
|
| 545 |
+
pitch_shift_amt = gr.Slider(
|
| 546 |
+
label="pitch shift amount (semitones)",
|
| 547 |
+
minimum=-12,
|
| 548 |
+
maximum=12,
|
| 549 |
+
step=1,
|
| 550 |
+
value=0,
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
stretch_factor = gr.Slider(
|
| 554 |
+
label="time stretch factor",
|
| 555 |
+
minimum=0,
|
| 556 |
+
maximum=8,
|
| 557 |
+
step=1,
|
| 558 |
+
value=1,
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
with gr.Accordion("sampling settings", open=False):
|
| 565 |
+
sampletemp = gr.Slider(
|
| 566 |
+
label="sample temperature",
|
| 567 |
+
minimum=0.1,
|
| 568 |
+
maximum=10.0,
|
| 569 |
+
value=1.0,
|
| 570 |
+
step=0.001
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
top_p = gr.Slider(
|
| 574 |
+
label="top p (0.0 = off)",
|
| 575 |
+
minimum=0.0,
|
| 576 |
+
maximum=1.0,
|
| 577 |
+
value=0.0
|
| 578 |
+
)
|
| 579 |
+
typical_filtering = gr.Checkbox(
|
| 580 |
+
label="typical filtering ",
|
| 581 |
+
value=True
|
| 582 |
+
)
|
| 583 |
+
typical_mass = gr.Slider(
|
| 584 |
+
label="typical mass (should probably stay between 0.1 and 0.5)",
|
| 585 |
+
minimum=0.01,
|
| 586 |
+
maximum=0.99,
|
| 587 |
+
value=0.15
|
| 588 |
+
)
|
| 589 |
+
typical_min_tokens = gr.Slider(
|
| 590 |
+
label="typical min tokens (should probably stay between 1 and 256)",
|
| 591 |
+
minimum=1,
|
| 592 |
+
maximum=256,
|
| 593 |
+
step=1,
|
| 594 |
+
value=64
|
| 595 |
+
)
|
| 596 |
+
sample_cutoff = gr.Slider(
|
| 597 |
+
label="sample cutoff",
|
| 598 |
+
minimum=0.0,
|
| 599 |
+
maximum=0.9,
|
| 600 |
+
value=1.0,
|
| 601 |
+
step=0.01
|
| 602 |
+
)
|
| 603 |
+
sampling_steps = gr.Slider(
|
| 604 |
+
label="sampling steps",
|
| 605 |
+
minimum=1,
|
| 606 |
+
maximum=128,
|
| 607 |
+
step=1,
|
| 608 |
+
value=36
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
seed = gr.Number(
|
| 614 |
+
label="seed (0 for random)",
|
| 615 |
+
value=0,
|
| 616 |
+
precision=0,
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
# mask settings
|
| 621 |
+
with gr.Column():
|
| 622 |
+
|
| 623 |
+
model_choice = gr.Dropdown(
|
| 624 |
+
label="model choice",
|
| 625 |
+
choices=list(interface.available_models()),
|
| 626 |
+
value=init_model_choice,
|
| 627 |
+
visible=True
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
vamp_button = gr.Button("generate (vamp)!!!")
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
audio_outs = []
|
| 635 |
+
use_as_input_btns = []
|
| 636 |
+
for i in range(2):
|
| 637 |
+
with gr.Column():
|
| 638 |
+
audio_outs.append(gr.Audio(
|
| 639 |
+
label=f"output audio {i+1}",
|
| 640 |
+
interactive=False,
|
| 641 |
+
type="numpy"
|
| 642 |
+
))
|
| 643 |
+
use_as_input_btns.append(
|
| 644 |
+
gr.Button(f"use as input (feedback)")
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
thank_you = gr.Markdown("")
|
| 648 |
+
|
| 649 |
+
# download all the outputs
|
| 650 |
+
# download = gr.File(type="filepath", label="download outputs")
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
# mask preview change
|
| 654 |
+
for widget in (
|
| 655 |
+
periodic_p, n_mask_codebooks,
|
| 656 |
+
onset_mask_width, dropout
|
| 657 |
+
):
|
| 658 |
+
widget.change(
|
| 659 |
+
fn=mask_preview,
|
| 660 |
+
inputs=[periodic_p, n_mask_codebooks,
|
| 661 |
+
onset_mask_width, dropout],
|
| 662 |
+
outputs=[maskimg]
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
_inputs = [
|
| 667 |
+
input_audio,
|
| 668 |
+
sampletemp,
|
| 669 |
+
top_p,
|
| 670 |
+
periodic_p,
|
| 671 |
+
dropout,
|
| 672 |
+
stretch_factor,
|
| 673 |
+
onset_mask_width,
|
| 674 |
+
typical_filtering,
|
| 675 |
+
typical_mass,
|
| 676 |
+
typical_min_tokens,
|
| 677 |
+
seed,
|
| 678 |
+
model_choice,
|
| 679 |
+
n_mask_codebooks,
|
| 680 |
+
pitch_shift_amt,
|
| 681 |
+
sample_cutoff,
|
| 682 |
+
sampling_steps,
|
| 683 |
+
beat_mask_ms,
|
| 684 |
+
num_feedback_steps
|
| 685 |
+
]
|
| 686 |
+
|
| 687 |
+
# connect widgets
|
| 688 |
+
vamp_button.click(
|
| 689 |
+
fn=vamp,
|
| 690 |
+
inputs=_inputs,
|
| 691 |
+
outputs=[audio_outs[0], audio_outs[1], maskimg],
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
api_vamp_button = gr.Button("api vamp", visible=True)
|
| 695 |
+
api_vamp_button.click(
|
| 696 |
+
fn=api_vamp,
|
| 697 |
+
inputs=[input_audio,
|
| 698 |
+
sampletemp, top_p,
|
| 699 |
+
periodic_p,
|
| 700 |
+
dropout,
|
| 701 |
+
stretch_factor,
|
| 702 |
+
onset_mask_width,
|
| 703 |
+
typical_filtering,
|
| 704 |
+
typical_mass,
|
| 705 |
+
typical_min_tokens,
|
| 706 |
+
seed,
|
| 707 |
+
model_choice,
|
| 708 |
+
n_mask_codebooks,
|
| 709 |
+
pitch_shift_amt,
|
| 710 |
+
sample_cutoff,
|
| 711 |
+
sampling_steps,
|
| 712 |
+
beat_mask_ms,
|
| 713 |
+
num_feedback_steps
|
| 714 |
+
],
|
| 715 |
+
outputs=[audio_outs[0], audio_outs[1]],
|
| 716 |
+
api_name="vamp"
|
| 717 |
+
)
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
#NEW: HARP endpoint (new PyHARP API)
|
| 721 |
+
harp_model_card = ModelCard(
|
| 722 |
+
name="vampnet",
|
| 723 |
+
description="generating audio by filling in the blanks.",
|
| 724 |
+
author="hugo flores garcía et al. (descript/northwestern)",
|
| 725 |
+
tags=["sound", "generation"]
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
harp_input_components = [
|
| 729 |
+
gr.Audio(type="filepath", label="Input Audio").harp_required(True),
|
| 730 |
+
gr.Slider(label="Sample Temperature", minimum=0.1, maximum=10.0, value=1.0, step=0.001),
|
| 731 |
+
gr.Slider(label="Periodic Prompt", minimum=0, maximum=13, step=1, value=7),
|
| 732 |
+
gr.Slider(label="Mask Dropout", minimum=0.0, maximum=1.0, step=0.01, value=0.0),
|
| 733 |
+
gr.Slider(label="Compression Prompt", value=3, minimum=1, maximum=14, step=1),
|
| 734 |
+
gr.Dropdown(label="Model Choice", choices=list(interface.available_models()), value=init_model_choice),
|
| 735 |
+
gr.Slider(label="Time Stretch Factor", minimum=0, maximum=8, step=1, value=1),
|
| 736 |
+
]
|
| 737 |
+
|
| 738 |
+
harp_output_components = [
|
| 739 |
+
gr.Audio(type="filepath", label="Generated Audio"),
|
| 740 |
+
gr.JSON(label="Generated Labels"),
|
| 741 |
+
]
|
| 742 |
+
|
| 743 |
+
harp_app = build_endpoint(
|
| 744 |
+
model_card=harp_model_card,
|
| 745 |
+
input_components=harp_input_components,
|
| 746 |
+
output_components=harp_output_components,
|
| 747 |
+
process_fn=harp_vamp
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
with gr.Row():
|
| 751 |
+
gr.Markdown("### VST / HARP Plugin Controls")
|
| 752 |
+
for comp in harp_app.values():
|
| 753 |
+
comp.render()
|
| 754 |
+
|
| 755 |
+
try:
|
| 756 |
+
demo.queue()
|
| 757 |
+
demo.launch(share=True)
|
| 758 |
+
except KeyboardInterrupt:
|
| 759 |
+
shutil.rmtree("gradio-outputs", ignore_errors=True)
|
| 760 |
+
raise
|
assets/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
conf/c2f.yml
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/vampnet.yml
|
| 3 |
+
|
| 4 |
+
VampNet.n_codebooks: 14
|
| 5 |
+
VampNet.n_conditioning_codebooks: 4
|
| 6 |
+
|
| 7 |
+
VampNet.embedding_dim: 1280
|
| 8 |
+
VampNet.n_layers: 16
|
| 9 |
+
VampNet.n_heads: 20
|
| 10 |
+
|
| 11 |
+
AudioDataset.duration: 3.0
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
AudioDataset.loudness_cutoff: -40.0
|
conf/generated/cat/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/vampnet/c2f.pth
|
| 12 |
+
save_path: ./runs/cat/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- scratch/cat-audio
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/cat/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/vampnet/coarse.pth
|
| 5 |
+
save_path: ./runs/cat/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- scratch/cat-audio
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/cat/interface.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - scratch/cat-audio
|
| 3 |
+
Interface.coarse2fine_ckpt: ./runs/cat/c2f/latest/vampnet/weights.pth
|
| 4 |
+
Interface.coarse_ckpt: ./runs/cat/coarse/latest/vampnet/weights.pth
|
| 5 |
+
Interface.codec_ckpt: ./models/vampnet/codec.pth
|
| 6 |
+
Interface.wavebeat_ckpt: ./models/wavebeat.pth
|
conf/generated/cat10/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/vampnet/c2f.pth
|
| 12 |
+
save_path: ./runs/cat10/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- scratch/cat-audio-10s
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/cat10/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/vampnet/coarse.pth
|
| 5 |
+
save_path: ./runs/cat10/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- scratch/cat-audio-10s
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/cat10/interface.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - scratch/cat-audio-10s
|
| 3 |
+
Interface.coarse2fine_ckpt: ./runs/cat10/c2f/latest/vampnet/weights.pth
|
| 4 |
+
Interface.coarse_ckpt: ./runs/cat10/coarse/latest/vampnet/weights.pth
|
| 5 |
+
Interface.codec_ckpt: ./models/vampnet/codec.pth
|
| 6 |
+
Interface.wavebeat_ckpt: ./models/wavebeat.pth
|
conf/generated/ivo/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/vampnet/c2f.pth
|
| 12 |
+
save_path: ./runs/ivo/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- ./scratch/miguel/ivo/separated
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/ivo/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/vampnet/coarse.pth
|
| 5 |
+
save_path: ./runs/ivo/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- ./scratch/miguel/ivo/separated
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/ivo/interface.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - ./scratch/miguel/ivo/separated
|
| 3 |
+
Interface.coarse2fine_ckpt: ./runs/ivo/c2f/latest/vampnet/weights.pth
|
| 4 |
+
Interface.coarse_ckpt: ./runs/ivo/coarse/latest/vampnet/weights.pth
|
| 5 |
+
Interface.codec_ckpt: ./models/vampnet/codec.pth
|
| 6 |
+
Interface.wavebeat_ckpt: ./models/wavebeat.pth
|
conf/generated/lazaro-ros-sep/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/vampnet/c2f.pth
|
| 12 |
+
save_path: ./runs/lazaro-ros-sep/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- ./scratch/miguel/lazaro-ros/separated
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/lazaro-ros-sep/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/vampnet/coarse.pth
|
| 5 |
+
save_path: ./runs/lazaro-ros-sep/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- ./scratch/miguel/lazaro-ros/separated
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/lazaro-ros-sep/interface.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - ./scratch/miguel/lazaro-ros/separated
|
| 3 |
+
Interface.coarse2fine_ckpt: ./runs/lazaro-ros-sep/c2f/latest/vampnet/weights.pth
|
| 4 |
+
Interface.coarse_ckpt: ./runs/lazaro-ros-sep/coarse/latest/vampnet/weights.pth
|
| 5 |
+
Interface.codec_ckpt: ./models/vampnet/codec.pth
|
| 6 |
+
Interface.wavebeat_ckpt: ./models/wavebeat.pth
|
conf/generated/lazaro-ros/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/vampnet/c2f.pth
|
| 12 |
+
save_path: ./runs/lazaro-ros/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- ./scratch/miguel/lazaro-ros
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/lazaro-ros/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/vampnet/coarse.pth
|
| 5 |
+
save_path: ./runs/lazaro-ros/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- ./scratch/miguel/lazaro-ros
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/lazaro-ros/interface.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - ./scratch/miguel/lazaro-ros
|
| 3 |
+
Interface.coarse2fine_ckpt: ./runs/lazaro-ros/c2f/latest/vampnet/weights.pth
|
| 4 |
+
Interface.coarse_ckpt: ./runs/lazaro-ros/coarse/latest/vampnet/weights.pth
|
| 5 |
+
Interface.codec_ckpt: ./models/vampnet/codec.pth
|
| 6 |
+
Interface.wavebeat_ckpt: ./models/wavebeat.pth
|
conf/generated/le-poisson-steve/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/vampnet/c2f.pth
|
| 12 |
+
save_path: ./runs/le-poisson-steve/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- scratch/steve
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/le-poisson-steve/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/vampnet/coarse.pth
|
| 5 |
+
save_path: ./runs/le-poisson-steve/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- scratch/steve
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/le-poisson-steve/interface.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - scratch/steve
|
| 3 |
+
Interface.coarse2fine_ckpt: ./runs/le-poisson-steve/c2f/latest/vampnet/weights.pth
|
| 4 |
+
Interface.coarse_ckpt: ./runs/le-poisson-steve/coarse/latest/vampnet/weights.pth
|
| 5 |
+
Interface.codec_ckpt: ./models/vampnet/codec.pth
|
| 6 |
+
Interface.wavebeat_ckpt: ./models/wavebeat.pth
|
conf/generated/march-31/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/vampnet/c2f.pth
|
| 12 |
+
save_path: ./runs/march-31/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- sound-journal-march-31
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/march-31/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/vampnet/coarse.pth
|
| 5 |
+
save_path: ./runs/march-31/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- sound-journal-march-31
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/march-31/interface.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - sound-journal-march-31
|
| 3 |
+
Interface.coarse2fine_ckpt: ./runs/march-31/c2f/latest/vampnet/weights.pth
|
| 4 |
+
Interface.coarse_ckpt: ./runs/march-31/coarse/latest/vampnet/weights.pth
|
| 5 |
+
Interface.codec_ckpt: ./models/vampnet/codec.pth
|
| 6 |
+
Interface.wavebeat_ckpt: ./models/wavebeat.pth
|
conf/generated/sax-new/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/vampnet/c2f.pth
|
| 12 |
+
save_path: ./runs/sax-new/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- ./scratch/miguel/saxophone-new/
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/sax-new/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/vampnet/coarse.pth
|
| 5 |
+
save_path: ./runs/sax-new/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- ./scratch/miguel/saxophone-new/
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/sax-new/interface.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - ./scratch/miguel/saxophone-new/
|
| 3 |
+
Interface.coarse2fine_ckpt: ./runs/sax-new/c2f/latest/vampnet/weights.pth
|
| 4 |
+
Interface.coarse_ckpt: ./runs/sax-new/coarse/latest/vampnet/weights.pth
|
| 5 |
+
Interface.codec_ckpt: ./models/vampnet/codec.pth
|
| 6 |
+
Interface.wavebeat_ckpt: ./models/wavebeat.pth
|
conf/generated/saxophone/c2f.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
AudioDataset.duration: 3.0
|
| 4 |
+
AudioDataset.loudness_cutoff: -40.0
|
| 5 |
+
VampNet.embedding_dim: 1280
|
| 6 |
+
VampNet.n_codebooks: 14
|
| 7 |
+
VampNet.n_conditioning_codebooks: 4
|
| 8 |
+
VampNet.n_heads: 20
|
| 9 |
+
VampNet.n_layers: 16
|
| 10 |
+
fine_tune: true
|
| 11 |
+
fine_tune_checkpoint: ./models/vampnet/c2f.pth
|
| 12 |
+
save_path: ./runs/saxophone/c2f
|
| 13 |
+
train/AudioLoader.sources: &id001
|
| 14 |
+
- scratch/sounds
|
| 15 |
+
val/AudioLoader.sources: *id001
|
conf/generated/saxophone/coarse.yml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/lora/lora.yml
|
| 3 |
+
fine_tune: true
|
| 4 |
+
fine_tune_checkpoint: ./models/vampnet/coarse.pth
|
| 5 |
+
save_path: ./runs/saxophone/coarse
|
| 6 |
+
train/AudioLoader.sources: &id001
|
| 7 |
+
- scratch/sounds
|
| 8 |
+
val/AudioLoader.sources: *id001
|
conf/generated/saxophone/interface.yml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AudioLoader.sources:
|
| 2 |
+
- - scratch/sounds
|
| 3 |
+
Interface.coarse2fine_ckpt: ./runs/saxophone/c2f/latest/vampnet/weights.pth
|
| 4 |
+
Interface.coarse_ckpt: ./runs/saxophone/coarse/latest/vampnet/weights.pth
|
| 5 |
+
Interface.codec_ckpt: ./models/vampnet/codec.pth
|
| 6 |
+
Interface.wavebeat_ckpt: ./models/wavebeat.pth
|
conf/interface.yml
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Interface.coarse_ckpt: ./models/vampnet/coarse.pth
|
| 2 |
+
Interface.coarse2fine_ckpt: ./models/vampnet/c2f.pth
|
| 3 |
+
Interface.codec_ckpt: ./models/vampnet/codec.pth
|
| 4 |
+
Interface.coarse_chunk_size_s: 10
|
| 5 |
+
Interface.coarse2fine_chunk_size_s: 3
|
| 6 |
+
Interface.wavebeat_ckpt: ./models/wavebeat.pth
|
| 7 |
+
|
| 8 |
+
# AudioLoader.sources:
|
| 9 |
+
# - /media/CHONK/null
|
| 10 |
+
|
conf/lora/lora-s2s.yml
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/vampnet.yml
|
| 3 |
+
|
| 4 |
+
fine_tune: True
|
| 5 |
+
|
| 6 |
+
train/AudioDataset.n_examples: 100000000
|
| 7 |
+
val/AudioDataset.n_examples: 500
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
NoamScheduler.warmup: 500
|
| 11 |
+
|
| 12 |
+
batch_size: 7
|
| 13 |
+
num_workers: 7
|
| 14 |
+
save_iters: [2000, 4000, 10000,20000, 40000, 100000]
|
| 15 |
+
sample_freq: 2000
|
| 16 |
+
val_freq: 1000
|
| 17 |
+
|
| 18 |
+
AdamW.lr: 0.0001
|
| 19 |
+
|
| 20 |
+
# let's us organize sound classes into folders and choose from those sound classes uniformly
|
| 21 |
+
AudioDataset.without_replacement: False
|
| 22 |
+
num_iters: 500000
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# control signals to use as conditioning.
|
| 26 |
+
Sketch2SoundController.ctrl_keys: ['rmsq16',]
|
| 27 |
+
|
conf/lora/lora.yml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
$include:
|
| 2 |
+
- conf/vampnet.yml
|
| 3 |
+
|
| 4 |
+
fine_tune: True
|
| 5 |
+
|
| 6 |
+
train/AudioDataset.n_examples: 100000000
|
| 7 |
+
val/AudioDataset.n_examples: 500
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
NoamScheduler.warmup: 500
|
| 11 |
+
|
| 12 |
+
batch_size: 7
|
| 13 |
+
num_workers: 7
|
| 14 |
+
save_iters: [2000, 4000, 10000, 20000, 40000, 100000]
|
| 15 |
+
sample_freq: 2000
|
| 16 |
+
val_freq: 1000
|
| 17 |
+
|
| 18 |
+
AdamW.lr: 0.0001
|
| 19 |
+
|
| 20 |
+
# let's us organize sound classes into folders and choose from those sound classes uniformly
|
| 21 |
+
AudioDataset.without_replacement: False
|
| 22 |
+
num_iters: 500000
|
conf/salad_bowl.yml
ADDED
|
File without changes
|
conf/vampnet.yml
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
codec_ckpt: ./models/vampnet/codec.pth
|
| 3 |
+
save_path: ckpt
|
| 4 |
+
|
| 5 |
+
num_iters: 1000000000
|
| 6 |
+
save_iters: [10000, 50000, 100000, 300000, 500000]
|
| 7 |
+
val_idx: [0,1,2,3,4,5,6,7,8,9]
|
| 8 |
+
sample_freq: 10000
|
| 9 |
+
val_freq: 1000
|
| 10 |
+
|
| 11 |
+
batch_size: 8
|
| 12 |
+
num_workers: 10
|
| 13 |
+
|
| 14 |
+
# Optimization
|
| 15 |
+
amp: false
|
| 16 |
+
|
| 17 |
+
CrossEntropyLoss.label_smoothing: 0.1
|
| 18 |
+
|
| 19 |
+
AdamW.lr: 0.001
|
| 20 |
+
|
| 21 |
+
NoamScheduler.factor: 2.0
|
| 22 |
+
NoamScheduler.warmup: 10000
|
| 23 |
+
|
| 24 |
+
VampNet.vocab_size: 1024
|
| 25 |
+
VampNet.n_codebooks: 4
|
| 26 |
+
VampNet.n_conditioning_codebooks: 0
|
| 27 |
+
VampNet.r_cond_dim: 0
|
| 28 |
+
VampNet.noise_mode: mask
|
| 29 |
+
VampNet.embedding_dim: 1280
|
| 30 |
+
VampNet.n_layers: 20
|
| 31 |
+
VampNet.n_heads: 20
|
| 32 |
+
VampNet.flash_attn: false
|
| 33 |
+
VampNet.dropout: 0.1
|
| 34 |
+
|
| 35 |
+
AudioLoader.relative_path: ""
|
| 36 |
+
AudioDataset.loudness_cutoff: -30.0
|
| 37 |
+
AudioDataset.without_replacement: true
|
| 38 |
+
AudioLoader.shuffle: true
|
| 39 |
+
|
| 40 |
+
AudioDataset.duration: 10.0
|
| 41 |
+
|
| 42 |
+
train/AudioDataset.n_examples: 10000000
|
| 43 |
+
train/AudioLoader.sources:
|
| 44 |
+
- /media/CHONK/hugo/spotdl/audio-train
|
| 45 |
+
|
| 46 |
+
val/AudioDataset.n_examples: 2000
|
| 47 |
+
val/AudioLoader.sources:
|
| 48 |
+
- /media/CHONK/hugo/spotdl/audio-val
|
| 49 |
+
|
hello.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import vampnet
|
| 3 |
+
import audiotools as at
|
| 4 |
+
|
| 5 |
+
# load the default vampnet model
|
| 6 |
+
interface = vampnet.interface.Interface.default()
|
| 7 |
+
|
| 8 |
+
# list available finetuned models
|
| 9 |
+
finetuned_model_choices = interface.available_models()
|
| 10 |
+
print(f"available finetuned models: {finetuned_model_choices}")
|
| 11 |
+
|
| 12 |
+
# pick a random finetuned model
|
| 13 |
+
model_choice = random.choice(finetuned_model_choices)
|
| 14 |
+
print(f"choosing model: {model_choice}")
|
| 15 |
+
|
| 16 |
+
# or pick a specific finetuned model
|
| 17 |
+
print(f"actually, forcing model: default")
|
| 18 |
+
model_choice = "default"
|
| 19 |
+
|
| 20 |
+
# load a finetuned model
|
| 21 |
+
interface.load_finetuned(model_choice)
|
| 22 |
+
|
| 23 |
+
# load an example audio file
|
| 24 |
+
signal = at.AudioSignal("assets/example.wav")
|
| 25 |
+
|
| 26 |
+
# get the tokens for the audio
|
| 27 |
+
codes = interface.encode(signal)
|
| 28 |
+
|
| 29 |
+
# build a mask for the audio
|
| 30 |
+
mask = interface.build_mask(
|
| 31 |
+
codes, signal,
|
| 32 |
+
periodic_prompt=13,
|
| 33 |
+
upper_codebook_mask=3,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# generate the output tokens
|
| 37 |
+
output_tokens = interface.vamp(
|
| 38 |
+
codes, mask, return_mask=False,
|
| 39 |
+
temperature=1.0,
|
| 40 |
+
typical_filtering=False,
|
| 41 |
+
debug=True
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# convert them to a signal
|
| 45 |
+
output_signal = interface.decode(output_tokens)
|
| 46 |
+
|
| 47 |
+
# save the output signal
|
| 48 |
+
output_signal.write("scratch/output.wav")
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
argbind>=0.3.2
|
| 3 |
+
numpy==1.23
|
| 4 |
+
loralib
|
| 5 |
+
wavebeat @ git+https://github.com/hugofloresgarcia/wavebeat
|
| 6 |
+
lac @ git+https://github.com/hugofloresgarcia/lac.git
|
| 7 |
+
descript-audiotools @ git+https://github.com/hugofloresgarcia/audiotools.git
|
| 8 |
+
-e git+https://github.com/audacitorch/pyharp.git@develop#egg=pyharp
|
| 9 |
+
torch_pitch_shift
|
| 10 |
+
gradio
|
| 11 |
+
pydantic==2.10.6
|
scratch/convert_to_wav.sh
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
for f in *.mp3; do ffmpeg -i "$f" "${f%.mp3}.wav"; done
|
scratch/rms_mask.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
|
| 2 |
+
0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
|
| 3 |
+
0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
|
| 4 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
| 5 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
| 6 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
| 7 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
| 8 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
| 9 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
| 10 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
| 11 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
| 12 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
| 13 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
| 14 |
+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
scratch/separate_folder.sh
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
for f in *.mp3; do demucs "$f" --two-stems=vocals; done
|
scripts/exp/eval.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
import os
|
| 3 |
+
from functools import partial
|
| 4 |
+
|
| 5 |
+
from frechet_audio_distance import FrechetAudioDistance
|
| 6 |
+
import pandas
|
| 7 |
+
import argbind
|
| 8 |
+
import torch
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
|
| 11 |
+
import audiotools
|
| 12 |
+
from audiotools import AudioSignal
|
| 13 |
+
|
| 14 |
+
@argbind.bind(without_prefix=True)
|
| 15 |
+
def eval(
|
| 16 |
+
exp_dir: str = None,
|
| 17 |
+
baseline_key: str = "baseline",
|
| 18 |
+
audio_ext: str = ".wav",
|
| 19 |
+
):
|
| 20 |
+
assert exp_dir is not None
|
| 21 |
+
exp_dir = Path(exp_dir)
|
| 22 |
+
assert exp_dir.exists(), f"exp_dir {exp_dir} does not exist"
|
| 23 |
+
|
| 24 |
+
# set up our metrics
|
| 25 |
+
# sisdr_loss = audiotools.metrics.distance.SISDRLoss()
|
| 26 |
+
# stft_loss = audiotools.metrics.spectral.MultiScaleSTFTLoss()
|
| 27 |
+
mel_loss = audiotools.metrics.spectral.MelSpectrogramLoss()
|
| 28 |
+
frechet = FrechetAudioDistance(
|
| 29 |
+
use_pca=False,
|
| 30 |
+
use_activation=False,
|
| 31 |
+
verbose=True,
|
| 32 |
+
audio_load_worker=4,
|
| 33 |
+
)
|
| 34 |
+
frechet.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 35 |
+
|
| 36 |
+
# figure out what conditions we have
|
| 37 |
+
conditions = [d.name for d in exp_dir.iterdir() if d.is_dir()]
|
| 38 |
+
|
| 39 |
+
assert baseline_key in conditions, f"baseline_key {baseline_key} not found in {exp_dir}"
|
| 40 |
+
conditions.remove(baseline_key)
|
| 41 |
+
|
| 42 |
+
print(f"Found {len(conditions)} conditions in {exp_dir}")
|
| 43 |
+
print(f"conditions: {conditions}")
|
| 44 |
+
|
| 45 |
+
baseline_dir = exp_dir / baseline_key
|
| 46 |
+
baseline_files = sorted(list(baseline_dir.glob(f"*{audio_ext}")), key=lambda x: int(x.stem))
|
| 47 |
+
|
| 48 |
+
metrics = []
|
| 49 |
+
for condition in tqdm(conditions):
|
| 50 |
+
cond_dir = exp_dir / condition
|
| 51 |
+
cond_files = sorted(list(cond_dir.glob(f"*{audio_ext}")), key=lambda x: int(x.stem))
|
| 52 |
+
|
| 53 |
+
print(f"computing fad for {baseline_dir} and {cond_dir}")
|
| 54 |
+
frechet_score = frechet.score(baseline_dir, cond_dir)
|
| 55 |
+
|
| 56 |
+
# make sure we have the same number of files
|
| 57 |
+
num_files = min(len(baseline_files), len(cond_files))
|
| 58 |
+
baseline_files = baseline_files[:num_files]
|
| 59 |
+
cond_files = cond_files[:num_files]
|
| 60 |
+
assert len(list(baseline_files)) == len(list(cond_files)), f"number of files in {baseline_dir} and {cond_dir} do not match. {len(list(baseline_files))} vs {len(list(cond_files))}"
|
| 61 |
+
|
| 62 |
+
def process(baseline_file, cond_file):
|
| 63 |
+
# make sure the files match (same name)
|
| 64 |
+
assert baseline_file.stem == cond_file.stem, f"baseline file {baseline_file} and cond file {cond_file} do not match"
|
| 65 |
+
|
| 66 |
+
# load the files
|
| 67 |
+
baseline_sig = AudioSignal(str(baseline_file))
|
| 68 |
+
cond_sig = AudioSignal(str(cond_file))
|
| 69 |
+
|
| 70 |
+
cond_sig.resample(baseline_sig.sample_rate)
|
| 71 |
+
cond_sig.truncate_samples(baseline_sig.length)
|
| 72 |
+
|
| 73 |
+
# if our condition is inpainting, we need to trim the conditioning off
|
| 74 |
+
if "inpaint" in condition:
|
| 75 |
+
ctx_amt = float(condition.split("_")[-1])
|
| 76 |
+
ctx_samples = int(ctx_amt * baseline_sig.sample_rate)
|
| 77 |
+
print(f"found inpainting condition. trimming off {ctx_samples} samples from {cond_file} and {baseline_file}")
|
| 78 |
+
cond_sig.trim(ctx_samples, ctx_samples)
|
| 79 |
+
baseline_sig.trim(ctx_samples, ctx_samples)
|
| 80 |
+
|
| 81 |
+
return {
|
| 82 |
+
# "sisdr": -sisdr_loss(baseline_sig, cond_sig).item(),
|
| 83 |
+
# "stft": stft_loss(baseline_sig, cond_sig).item(),
|
| 84 |
+
"mel": mel_loss(baseline_sig, cond_sig).item(),
|
| 85 |
+
"frechet": frechet_score,
|
| 86 |
+
# "visqol": vsq,
|
| 87 |
+
"condition": condition,
|
| 88 |
+
"file": baseline_file.stem,
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
print(f"processing {len(baseline_files)} files in {baseline_dir} and {cond_dir}")
|
| 92 |
+
metrics.extend(tqdm(map(process, baseline_files, cond_files), total=len(baseline_files)))
|
| 93 |
+
|
| 94 |
+
metric_keys = [k for k in metrics[0].keys() if k not in ("condition", "file")]
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
for mk in metric_keys:
|
| 98 |
+
stat = pandas.DataFrame(metrics)
|
| 99 |
+
stat = stat.groupby(['condition'])[mk].agg(['mean', 'count', 'std'])
|
| 100 |
+
stat.to_csv(exp_dir / f"stats-{mk}.csv")
|
| 101 |
+
|
| 102 |
+
df = pandas.DataFrame(metrics)
|
| 103 |
+
df.to_csv(exp_dir / "metrics-all.csv", index=False)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
if __name__ == "__main__":
|
| 107 |
+
args = argbind.parse_args()
|
| 108 |
+
|
| 109 |
+
with argbind.scope(args):
|
| 110 |
+
eval()
|
scripts/exp/experiment.py
ADDED
|
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
import random
|
| 3 |
+
from typing import List
|
| 4 |
+
import tempfile
|
| 5 |
+
import subprocess
|
| 6 |
+
|
| 7 |
+
import argbind
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
from vampnet.interface import Interface
|
| 12 |
+
from vampnet import mask as pmask
|
| 13 |
+
import audiotools as at
|
| 14 |
+
|
| 15 |
+
Interface: Interface = argbind.bind(Interface)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def calculate_bitrate(
|
| 20 |
+
interface, num_codebooks,
|
| 21 |
+
downsample_factor
|
| 22 |
+
):
|
| 23 |
+
bit_width = 10
|
| 24 |
+
sr = interface.codec.sample_rate
|
| 25 |
+
hop = interface.codec.hop_size
|
| 26 |
+
rate = (sr / hop) * ((bit_width * num_codebooks) / downsample_factor)
|
| 27 |
+
return rate
|
| 28 |
+
|
| 29 |
+
def baseline(sig, interface):
|
| 30 |
+
return interface.preprocess(sig)
|
| 31 |
+
|
| 32 |
+
def reconstructed(sig, interface):
|
| 33 |
+
return interface.decode(
|
| 34 |
+
interface.encode(sig)
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
def coarse2fine(sig, interface):
|
| 38 |
+
z = interface.encode(sig)
|
| 39 |
+
z = z[:, :interface.c2f.n_conditioning_codebooks, :]
|
| 40 |
+
|
| 41 |
+
z = interface.coarse_to_fine(z)
|
| 42 |
+
return interface.decode(z)
|
| 43 |
+
|
| 44 |
+
class CoarseCond:
|
| 45 |
+
|
| 46 |
+
def __init__(self, num_conditioning_codebooks, downsample_factor):
|
| 47 |
+
self.num_conditioning_codebooks = num_conditioning_codebooks
|
| 48 |
+
self.downsample_factor = downsample_factor
|
| 49 |
+
|
| 50 |
+
def __call__(self, sig, interface):
|
| 51 |
+
z = interface.encode(sig)
|
| 52 |
+
mask = pmask.full_mask(z)
|
| 53 |
+
mask = pmask.codebook_unmask(mask, self.num_conditioning_codebooks)
|
| 54 |
+
mask = pmask.periodic_mask(mask, self.downsample_factor)
|
| 55 |
+
|
| 56 |
+
zv = interface.coarse_vamp(z, mask)
|
| 57 |
+
zv = interface.coarse_to_fine(zv)
|
| 58 |
+
return interface.decode(zv)
|
| 59 |
+
|
| 60 |
+
def opus(sig, interface, bitrate=128):
|
| 61 |
+
sig = interface.preprocess(sig)
|
| 62 |
+
|
| 63 |
+
with tempfile.NamedTemporaryFile(suffix=".wav") as f:
|
| 64 |
+
sig.write(f.name)
|
| 65 |
+
|
| 66 |
+
opus_name = Path(f.name).with_suffix(".opus")
|
| 67 |
+
# convert to opus
|
| 68 |
+
cmd = [
|
| 69 |
+
"ffmpeg", "-y", "-i", f.name,
|
| 70 |
+
"-c:a", "libopus",
|
| 71 |
+
"-b:a", f"{bitrate}",
|
| 72 |
+
opus_name
|
| 73 |
+
]
|
| 74 |
+
subprocess.run(cmd, check=True)
|
| 75 |
+
|
| 76 |
+
# convert back to wav
|
| 77 |
+
output_name = Path(f"{f.name}-opus").with_suffix(".wav")
|
| 78 |
+
cmd = [
|
| 79 |
+
"ffmpeg", "-y", "-i", opus_name,
|
| 80 |
+
output_name
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
subprocess.run(cmd, check=True)
|
| 84 |
+
|
| 85 |
+
sig = at.AudioSignal(
|
| 86 |
+
output_name,
|
| 87 |
+
sample_rate=sig.sample_rate
|
| 88 |
+
)
|
| 89 |
+
return sig
|
| 90 |
+
|
| 91 |
+
def mask_ratio_1_step(ratio=1.0):
|
| 92 |
+
def wrapper(sig, interface):
|
| 93 |
+
z = interface.encode(sig)
|
| 94 |
+
mask = pmask.linear_random(z, ratio)
|
| 95 |
+
zv = interface.coarse_vamp(
|
| 96 |
+
z,
|
| 97 |
+
mask,
|
| 98 |
+
sampling_steps=1,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
return interface.decode(zv)
|
| 102 |
+
return wrapper
|
| 103 |
+
|
| 104 |
+
def num_sampling_steps(num_steps=1):
|
| 105 |
+
def wrapper(sig, interface: Interface):
|
| 106 |
+
z = interface.encode(sig)
|
| 107 |
+
mask = pmask.periodic_mask(z, 16)
|
| 108 |
+
zv = interface.coarse_vamp(
|
| 109 |
+
z,
|
| 110 |
+
mask,
|
| 111 |
+
sampling_steps=num_steps,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
zv = interface.coarse_to_fine(zv)
|
| 115 |
+
return interface.decode(zv)
|
| 116 |
+
return wrapper
|
| 117 |
+
|
| 118 |
+
def beat_mask(ctx_time):
|
| 119 |
+
def wrapper(sig, interface):
|
| 120 |
+
beat_mask = interface.make_beat_mask(
|
| 121 |
+
sig,
|
| 122 |
+
before_beat_s=ctx_time/2,
|
| 123 |
+
after_beat_s=ctx_time/2,
|
| 124 |
+
invert=True
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
z = interface.encode(sig)
|
| 128 |
+
|
| 129 |
+
zv = interface.coarse_vamp(
|
| 130 |
+
z, beat_mask
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
zv = interface.coarse_to_fine(zv)
|
| 134 |
+
return interface.decode(zv)
|
| 135 |
+
return wrapper
|
| 136 |
+
|
| 137 |
+
def inpaint(ctx_time):
|
| 138 |
+
def wrapper(sig, interface: Interface):
|
| 139 |
+
z = interface.encode(sig)
|
| 140 |
+
mask = pmask.inpaint(z, interface.s2t(ctx_time), interface.s2t(ctx_time))
|
| 141 |
+
|
| 142 |
+
zv = interface.coarse_vamp(z, mask)
|
| 143 |
+
zv = interface.coarse_to_fine(zv)
|
| 144 |
+
|
| 145 |
+
return interface.decode(zv)
|
| 146 |
+
return wrapper
|
| 147 |
+
|
| 148 |
+
def token_noise(noise_amt):
|
| 149 |
+
def wrapper(sig, interface: Interface):
|
| 150 |
+
z = interface.encode(sig)
|
| 151 |
+
mask = pmask.random(z, noise_amt)
|
| 152 |
+
z = torch.where(
|
| 153 |
+
mask,
|
| 154 |
+
torch.randint_like(z, 0, interface.coarse.vocab_size),
|
| 155 |
+
z
|
| 156 |
+
)
|
| 157 |
+
return interface.decode(z)
|
| 158 |
+
return wrapper
|
| 159 |
+
|
| 160 |
+
EXP_REGISTRY = {}
|
| 161 |
+
|
| 162 |
+
EXP_REGISTRY["gen-compression"] = {
|
| 163 |
+
"baseline": baseline,
|
| 164 |
+
"reconstructed": reconstructed,
|
| 165 |
+
"coarse2fine": coarse2fine,
|
| 166 |
+
**{
|
| 167 |
+
f"{n}_codebooks_downsampled_{x}x": CoarseCond(num_conditioning_codebooks=n, downsample_factor=x)
|
| 168 |
+
for (n, x) in (
|
| 169 |
+
(1, 1), # 1 codebook, no downsampling
|
| 170 |
+
(4, 4), # 4 codebooks, downsampled 4x
|
| 171 |
+
(4, 16), # 4 codebooks, downsampled 16x
|
| 172 |
+
(4, 32), # 4 codebooks, downsampled 16x
|
| 173 |
+
)
|
| 174 |
+
},
|
| 175 |
+
**{
|
| 176 |
+
f"token_noise_{x}": mask_ratio_1_step(ratio=x)
|
| 177 |
+
for x in [0.25, 0.5, 0.75]
|
| 178 |
+
},
|
| 179 |
+
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
EXP_REGISTRY["sampling-steps"] = {
|
| 184 |
+
# "codec": reconstructed,
|
| 185 |
+
**{f"steps_{n}": num_sampling_steps(n) for n in [1, 4, 12, 36, 64, 72]},
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
EXP_REGISTRY["musical-sampling"] = {
|
| 190 |
+
**{f"beat_mask_{t}": beat_mask(t) for t in [0.075]},
|
| 191 |
+
**{f"inpaint_{t}": inpaint(t) for t in [0.5, 1.0,]}, # multiply these by 2 (they go left and right)
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
@argbind.bind(without_prefix=True)
|
| 195 |
+
def main(
|
| 196 |
+
sources=[
|
| 197 |
+
"/media/CHONK/hugo/spotdl/val",
|
| 198 |
+
],
|
| 199 |
+
output_dir: str = "./samples",
|
| 200 |
+
max_excerpts: int = 2000,
|
| 201 |
+
exp_type: str = "gen-compression",
|
| 202 |
+
seed: int = 0,
|
| 203 |
+
ext: str = [".mp3"],
|
| 204 |
+
):
|
| 205 |
+
at.util.seed(seed)
|
| 206 |
+
interface = Interface()
|
| 207 |
+
|
| 208 |
+
output_dir = Path(output_dir)
|
| 209 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
| 210 |
+
|
| 211 |
+
from audiotools.data.datasets import AudioLoader, AudioDataset
|
| 212 |
+
|
| 213 |
+
loader = AudioLoader(sources=sources, shuffle_state=seed, ext=ext)
|
| 214 |
+
dataset = AudioDataset(loader,
|
| 215 |
+
sample_rate=interface.codec.sample_rate,
|
| 216 |
+
duration=interface.coarse.chunk_size_s,
|
| 217 |
+
n_examples=max_excerpts,
|
| 218 |
+
without_replacement=True,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
if exp_type in EXP_REGISTRY:
|
| 222 |
+
SAMPLE_CONDS = EXP_REGISTRY[exp_type]
|
| 223 |
+
else:
|
| 224 |
+
raise ValueError(f"Unknown exp_type {exp_type}")
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
indices = list(range(max_excerpts))
|
| 228 |
+
random.shuffle(indices)
|
| 229 |
+
for i in tqdm(indices):
|
| 230 |
+
# if all our files are already there, skip
|
| 231 |
+
done = []
|
| 232 |
+
for name in SAMPLE_CONDS:
|
| 233 |
+
o_dir = Path(output_dir) / name
|
| 234 |
+
done.append((o_dir / f"{i}.wav").exists())
|
| 235 |
+
if all(done):
|
| 236 |
+
continue
|
| 237 |
+
|
| 238 |
+
sig = dataset[i]["signal"]
|
| 239 |
+
results = {
|
| 240 |
+
name: cond(sig, interface).cpu()
|
| 241 |
+
for name, cond in SAMPLE_CONDS.items()
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
for name, sig in results.items():
|
| 245 |
+
o_dir = Path(output_dir) / name
|
| 246 |
+
o_dir.mkdir(exist_ok=True, parents=True)
|
| 247 |
+
|
| 248 |
+
sig.write(o_dir / f"{i}.wav")
|
| 249 |
+
|
| 250 |
+
if __name__ == "__main__":
|
| 251 |
+
args = argbind.parse_args()
|
| 252 |
+
|
| 253 |
+
with argbind.scope(args):
|
| 254 |
+
main()
|
scripts/exp/export.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
|
| 3 |
+
import shutil
|
| 4 |
+
import argparse
|
| 5 |
+
from vampnet import DEFAULT_HF_MODEL_REPO
|
| 6 |
+
from huggingface_hub import create_repo, repo_exists, HfApi
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
parser = argparse.ArgumentParser(description="Export the fine-tuned model to the repo")
|
| 11 |
+
parser.add_argument(
|
| 12 |
+
"--name", type=str, default="lazaro-ros-sep",
|
| 13 |
+
help="name of the fine-tuned model to export"
|
| 14 |
+
)
|
| 15 |
+
parser.add_argument(
|
| 16 |
+
"--model", type=str, default="latest",
|
| 17 |
+
help="model version to export. check runs/<name> for available versions"
|
| 18 |
+
)
|
| 19 |
+
parser.add_argument(
|
| 20 |
+
"--repo", type=str, default=DEFAULT_HF_MODEL_REPO,
|
| 21 |
+
help="name of the repo to export to"
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
args = parser.parse_args()
|
| 25 |
+
name = args.name
|
| 26 |
+
version = args.model
|
| 27 |
+
|
| 28 |
+
##
|
| 29 |
+
print(f"~~~~~~~~~~~ vampnet export! ~~~~~~~~~~~~")
|
| 30 |
+
print(f"exporting {name} version {version} to {args.repo}\n")
|
| 31 |
+
|
| 32 |
+
run_dir = Path(f"runs/{name}")
|
| 33 |
+
repo_dir = Path("models/vampnet")
|
| 34 |
+
|
| 35 |
+
# create our repo
|
| 36 |
+
new_repo = False
|
| 37 |
+
if not repo_exists(args.repo):
|
| 38 |
+
print(f"repo {args.repo} does not exist, creating it")
|
| 39 |
+
print(f"creating a repo at {args.repo}")
|
| 40 |
+
create_repo(args.repo)
|
| 41 |
+
new_repo = True
|
| 42 |
+
|
| 43 |
+
paths = []
|
| 44 |
+
for part in ("coarse", "c2f"):
|
| 45 |
+
outdir = repo_dir / "loras" / name
|
| 46 |
+
outdir.mkdir(parents=True, exist_ok=True)
|
| 47 |
+
outpath = outdir / f"{part}.pth"
|
| 48 |
+
path = run_dir / part / version / "vampnet" / "weights.pth"
|
| 49 |
+
# path.rename(outpath)
|
| 50 |
+
shutil.copy(path, outpath)
|
| 51 |
+
paths.append(outpath)
|
| 52 |
+
print(f"copied {path} to {outpath}")
|
| 53 |
+
|
| 54 |
+
print(f"uploading files to {args.repo}")
|
| 55 |
+
# upload files to the repo
|
| 56 |
+
|
| 57 |
+
# if it's a new repo, let's add the default models too
|
| 58 |
+
if new_repo:
|
| 59 |
+
paths.extend([repo_dir / "c2f.pth", repo_dir / "coarse.pth", repo_dir / "codec.pth", repo_dir / "wavebeat.pth"])
|
| 60 |
+
|
| 61 |
+
api = HfApi()
|
| 62 |
+
|
| 63 |
+
for path in paths:
|
| 64 |
+
path_in_repo = str(path.relative_to(repo_dir))
|
| 65 |
+
print(f"uploading {path} to {args.repo}/{path_in_repo}")
|
| 66 |
+
api.upload_file(
|
| 67 |
+
path_or_fileobj=path,
|
| 68 |
+
path_in_repo=path_in_repo,
|
| 69 |
+
repo_id=args.repo,
|
| 70 |
+
token=True,
|
| 71 |
+
commit_message=f"uploading {path_in_repo}",
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
print("done!!! >::0")
|
scripts/exp/fine_tune.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argbind
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import yaml
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
"""example output: (yaml)
|
| 10 |
+
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
@argbind.bind(without_prefix=True, positional=True)
|
| 14 |
+
def fine_tune(audio_files_or_folders: List[str], name: str):
|
| 15 |
+
|
| 16 |
+
conf_dir = Path("conf")
|
| 17 |
+
assert conf_dir.exists(), "conf directory not found. are you in the vampnet directory?"
|
| 18 |
+
|
| 19 |
+
conf_dir = conf_dir / "generated"
|
| 20 |
+
conf_dir.mkdir(exist_ok=True)
|
| 21 |
+
|
| 22 |
+
finetune_dir = conf_dir / name
|
| 23 |
+
finetune_dir.mkdir(exist_ok=True)
|
| 24 |
+
|
| 25 |
+
finetune_c2f_conf = {
|
| 26 |
+
"$include": ["conf/lora/lora.yml"],
|
| 27 |
+
"fine_tune": True,
|
| 28 |
+
"train/AudioLoader.sources": audio_files_or_folders,
|
| 29 |
+
"val/AudioLoader.sources": audio_files_or_folders,
|
| 30 |
+
"VampNet.n_codebooks": 14,
|
| 31 |
+
"VampNet.n_conditioning_codebooks": 4,
|
| 32 |
+
"VampNet.embedding_dim": 1280,
|
| 33 |
+
"VampNet.n_layers": 16,
|
| 34 |
+
"VampNet.n_heads": 20,
|
| 35 |
+
"AudioDataset.duration": 3.0,
|
| 36 |
+
"AudioDataset.loudness_cutoff": -40.0,
|
| 37 |
+
"save_path": f"./runs/{name}/c2f",
|
| 38 |
+
"fine_tune_checkpoint": "./models/vampnet/c2f.pth"
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
finetune_coarse_conf = {
|
| 42 |
+
"$include": ["conf/lora/lora.yml"],
|
| 43 |
+
"fine_tune": True,
|
| 44 |
+
"train/AudioLoader.sources": audio_files_or_folders,
|
| 45 |
+
"val/AudioLoader.sources": audio_files_or_folders,
|
| 46 |
+
"save_path": f"./runs/{name}/coarse",
|
| 47 |
+
"fine_tune_checkpoint": "./models/vampnet/coarse.pth"
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
interface_conf = {
|
| 51 |
+
"Interface.coarse_ckpt": f"./runs/{name}/coarse/latest/vampnet/weights.pth",
|
| 52 |
+
|
| 53 |
+
"Interface.coarse2fine_ckpt": f"./runs/{name}/c2f/latest/vampnet/weights.pth",
|
| 54 |
+
"Interface.wavebeat_ckpt": "./models/wavebeat.pth",
|
| 55 |
+
|
| 56 |
+
"Interface.codec_ckpt": "./models/vampnet/codec.pth",
|
| 57 |
+
"AudioLoader.sources": [audio_files_or_folders],
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
# save the confs
|
| 61 |
+
with open(finetune_dir / "c2f.yml", "w") as f:
|
| 62 |
+
yaml.dump(finetune_c2f_conf, f)
|
| 63 |
+
|
| 64 |
+
with open(finetune_dir / "coarse.yml", "w") as f:
|
| 65 |
+
yaml.dump(finetune_coarse_conf, f)
|
| 66 |
+
|
| 67 |
+
with open(finetune_dir / "interface.yml", "w") as f:
|
| 68 |
+
yaml.dump(interface_conf, f)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# print(f"generated confs in {finetune_dir}.
|
| 72 |
+
# run training jobs with `python scripts/exp/train.py --args.load {finetune_dir}/<c2f/coarse>.yml` ")
|
| 73 |
+
|
| 74 |
+
print(f"generated confs in {finetune_dir}.")
|
| 75 |
+
print()
|
| 76 |
+
print(f"you'll need to run two training jobs, though they can run in parallel on separate GPUs.")
|
| 77 |
+
print(f"run the coarse job with \n\tpython scripts/exp/train.py --args.load {finetune_dir}/coarse.yml\n")
|
| 78 |
+
print(f"run the c2f job with \n\tpython scripts/exp/train.py --args.load {finetune_dir}/c2f.yml\n")
|
| 79 |
+
if __name__ == "__main__":
|
| 80 |
+
args = argbind.parse_args()
|
| 81 |
+
|
| 82 |
+
with argbind.scope(args):
|
| 83 |
+
fine_tune()
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|