Spaces:
Paused
Paused
| #!/usr/bin/env python3` | |
| import glob | |
| import os | |
| import shutil | |
| from tests import get_tests_data_path, get_tests_output_path, run_cli | |
| from TTS.tts.utils.languages import LanguageManager | |
| from TTS.tts.utils.speakers import SpeakerManager | |
| from TTS.utils.generic_utils import get_user_data_dir | |
| from TTS.utils.manage import ModelManager | |
| def run_models(offset=0, step=1): | |
| """Check if all the models are downloadable and tts models run correctly.""" | |
| print(" > Run synthesizer with all the models.") | |
| output_path = os.path.join(get_tests_output_path(), "output.wav") | |
| manager = ModelManager(output_prefix=get_tests_output_path(), progress_bar=False) | |
| model_names = [name for name in manager.list_models() if "bark" not in name] | |
| for model_name in model_names[offset::step]: | |
| print(f"\n > Run - {model_name}") | |
| model_path, _, _ = manager.download_model(model_name) | |
| if "tts_models" in model_name: | |
| local_download_dir = os.path.dirname(model_path) | |
| # download and run the model | |
| speaker_files = glob.glob(local_download_dir + "/speaker*") | |
| language_files = glob.glob(local_download_dir + "/language*") | |
| language_id = "" | |
| if len(speaker_files) > 0: | |
| # multi-speaker model | |
| if "speaker_ids" in speaker_files[0]: | |
| speaker_manager = SpeakerManager(speaker_id_file_path=speaker_files[0]) | |
| elif "speakers" in speaker_files[0]: | |
| speaker_manager = SpeakerManager(d_vectors_file_path=speaker_files[0]) | |
| # multi-lingual model - Assuming multi-lingual models are also multi-speaker | |
| if len(language_files) > 0 and "language_ids" in language_files[0]: | |
| language_manager = LanguageManager(language_ids_file_path=language_files[0]) | |
| language_id = language_manager.language_names[0] | |
| speaker_id = list(speaker_manager.name_to_id.keys())[0] | |
| run_cli( | |
| f"tts --model_name {model_name} " | |
| f'--text "This is an example." --out_path "{output_path}" --speaker_idx "{speaker_id}" --language_idx "{language_id}" --progress_bar False' | |
| ) | |
| else: | |
| # single-speaker model | |
| run_cli( | |
| f"tts --model_name {model_name} " | |
| f'--text "This is an example." --out_path "{output_path}" --progress_bar False' | |
| ) | |
| # remove downloaded models | |
| shutil.rmtree(local_download_dir) | |
| shutil.rmtree(get_user_data_dir("tts")) | |
| elif "voice_conversion_models" in model_name: | |
| speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") | |
| reference_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0032.wav") | |
| run_cli( | |
| f"tts --model_name {model_name} " | |
| f'--out_path "{output_path}" --source_wav "{speaker_wav}" --target_wav "{reference_wav}" --progress_bar False' | |
| ) | |
| else: | |
| # only download the model | |
| manager.download_model(model_name) | |
| print(f" | > OK: {model_name}") | |
| # folders = glob.glob(os.path.join(manager.output_prefix, "*")) | |
| # assert len(folders) == len(model_names) // step | |
| def test_models_offset_0_step_3(): | |
| run_models(offset=0, step=3) | |
| def test_models_offset_1_step_3(): | |
| run_models(offset=1, step=3) | |
| def test_models_offset_2_step_3(): | |
| run_models(offset=2, step=3) | |
| def test_bark(): | |
| """Bark is too big to run on github actions. We need to test it locally""" | |
| output_path = os.path.join(get_tests_output_path(), "output.wav") | |
| run_cli( | |
| f" tts --model_name tts_models/multilingual/multi-dataset/bark " | |
| f'--text "This is an example." --out_path "{output_path}" --progress_bar False' | |
| ) | |
| def test_voice_conversion(): | |
| print(" > Run voice conversion inference using YourTTS model.") | |
| model_name = "tts_models/multilingual/multi-dataset/your_tts" | |
| language_id = "en" | |
| speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav") | |
| reference_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0032.wav") | |
| output_path = os.path.join(get_tests_output_path(), "output.wav") | |
| run_cli( | |
| f"tts --model_name {model_name}" | |
| f" --out_path {output_path} --speaker_wav {speaker_wav} --reference_wav {reference_wav} --language_idx {language_id} --progress_bar False" | |
| ) | |