Spaces:
Running
on
Zero
Running
on
Zero
File size: 56,004 Bytes
4672a35 3faafa7 4672a35 7b828f7 4672a35 7b828f7 4672a35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
SDPose Gradio Space
Author: T. S. Liang
Features:
- Support both body (17 keypoints) and wholebody (133 keypoints)
- Support image and video inference
"""
# CRITICAL: Import spaces FIRST before any CUDA-related packages (torch, diffusers, etc.)
import os
import sys
# Try to import zero_gpu BEFORE any other imports
try:
import spaces
SPACES_ZERO_GPU = True
print("β
spaces (zero_gpu) imported successfully")
except ImportError:
SPACES_ZERO_GPU = False
print("β οΈ spaces not available, zero_gpu disabled")
# Create dummy decorator
class spaces:
@staticmethod
def GPU(func):
return func
# Now import other packages (after spaces is imported)
import gradio as gr
import cv2
import numpy as np
import torch
import math
import json
import matplotlib.colors
from pathlib import Path
from PIL import Image
from torchvision import transforms
from typing import Optional, Tuple, List
import tempfile
from tqdm import tqdm
from huggingface_hub import snapshot_download
# Add current directory to path for imports
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# Import required modules
from diffusers import DDPMScheduler, AutoencoderKL, UNet2DConditionModel
from transformers import CLIPTokenizer, CLIPTextModel
from models.HeatmapHead import get_heatmap_head
from models.ModifiedUNet import Modified_forward
from pipelines.SDPose_D_Pipeline import SDPose_D_Pipeline
from safetensors.torch import load_file
try:
from diffusers.utils import is_xformers_available
except ImportError:
def is_xformers_available():
return False
# Try to import YOLO
try:
from ultralytics import YOLO
YOLO_AVAILABLE = True
except ImportError:
YOLO_AVAILABLE = False
print("β οΈ ultralytics not available, YOLO detection will be disabled")
# Constants for Gradio Space
MODEL_REPOS = {
"body": "teemosliang/SDPose-Body",
"wholebody": "teemosliang/SDPose-Wholebody"
}
DEFAULT_YOLO_MODEL = "yolov8n.pt" # Will auto-download
def draw_body17_keypoints_openpose_style(canvas, keypoints, scores=None, threshold=0.3, overlay_mode=False, overlay_alpha=0.6):
"""
Draw body keypoints in DWPose style (from util.py draw_bodypose)
This function converts COCO17 format to OpenPose 18-point format with neck
"""
H, W, C = canvas.shape
if len(keypoints) >= 7:
neck = (keypoints[5] + keypoints[6]) / 2
neck_score = min(scores[5], scores[6]) if scores is not None else 1.0
candidate = np.zeros((18, 2))
candidate_scores = np.zeros(18)
candidate[0] = keypoints[0]
candidate[1] = neck
candidate[2] = keypoints[6]
candidate[3] = keypoints[8]
candidate[4] = keypoints[10]
candidate[5] = keypoints[5]
candidate[6] = keypoints[7]
candidate[7] = keypoints[9]
candidate[8] = keypoints[12]
candidate[9] = keypoints[14]
candidate[10] = keypoints[16]
candidate[11] = keypoints[11]
candidate[12] = keypoints[13]
candidate[13] = keypoints[15]
candidate[14] = keypoints[2]
candidate[15] = keypoints[1]
candidate[16] = keypoints[4]
candidate[17] = keypoints[3]
if scores is not None:
candidate_scores[0] = scores[0]
candidate_scores[1] = neck_score
candidate_scores[2] = scores[6]
candidate_scores[3] = scores[8]
candidate_scores[4] = scores[10]
candidate_scores[5] = scores[5]
candidate_scores[6] = scores[7]
candidate_scores[7] = scores[9]
candidate_scores[8] = scores[12]
candidate_scores[9] = scores[14]
candidate_scores[10] = scores[16]
candidate_scores[11] = scores[11]
candidate_scores[12] = scores[13]
candidate_scores[13] = scores[15]
candidate_scores[14] = scores[2]
candidate_scores[15] = scores[1]
candidate_scores[16] = scores[4]
candidate_scores[17] = scores[3]
else:
return canvas
avg_size = (H + W) / 2
stickwidth = max(1, int(avg_size / 256))
circle_radius = max(2, int(avg_size / 192))
limbSeq = [
[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10],
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17],
[1, 16], [16, 18]
]
colors = [
[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
[85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
[0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]
]
for i in range(len(limbSeq)):
index = np.array(limbSeq[i]) - 1
if index[0] >= len(candidate) or index[1] >= len(candidate):
continue
if scores is not None:
if candidate_scores[index[0]] < threshold or candidate_scores[index[1]] < threshold:
continue
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
if length < 1:
continue
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly(
(int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1
)
cv2.fillConvexPoly(canvas, polygon, colors[i % len(colors)])
for i in range(18):
if scores is not None and candidate_scores[i] < threshold:
continue
x, y = candidate[i]
x = int(x)
y = int(y)
if x < 0 or y < 0 or x >= W or y >= H:
continue
cv2.circle(canvas, (int(x), int(y)), circle_radius, colors[i % len(colors)], thickness=-1)
return canvas
def draw_wholebody_keypoints_openpose_style(canvas, keypoints, scores=None, threshold=0.3, overlay_mode=False, overlay_alpha=0.6):
"""Draw wholebody keypoints in DWPose style"""
H, W, C = canvas.shape
stickwidth = 4
body_limbSeq = [
[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10],
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17],
[1, 16], [16, 18]
]
hand_edges = [
[0, 1], [1, 2], [2, 3], [3, 4], # thumb
[0, 5], [5, 6], [6, 7], [7, 8], # index
[0, 9], [9, 10], [10, 11], [11, 12], # middle
[0, 13], [13, 14], [14, 15], [15, 16], # ring
[0, 17], [17, 18], [18, 19], [19, 20], # pinky
]
colors = [
[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
[85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
[0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]
]
# Draw body limbs
if len(keypoints) >= 18:
for i, limb in enumerate(body_limbSeq):
idx1, idx2 = limb[0] - 1, limb[1] - 1
if idx1 >= 18 or idx2 >= 18:
continue
if scores is not None:
if scores[idx1] < threshold or scores[idx2] < threshold:
continue
Y = np.array([keypoints[idx1][0], keypoints[idx2][0]])
X = np.array([keypoints[idx1][1], keypoints[idx2][1]])
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
if length < 1:
continue
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly(
(int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1
)
cv2.fillConvexPoly(canvas, polygon, colors[i % len(colors)])
# Draw body keypoints
if len(keypoints) >= 18:
for i in range(18):
if scores is not None and scores[i] < threshold:
continue
x, y = int(keypoints[i][0]), int(keypoints[i][1])
if 0 <= x < W and 0 <= y < H:
cv2.circle(canvas, (x, y), 4, colors[i % len(colors)], thickness=-1)
# Draw foot keypoints
if len(keypoints) >= 24:
for i in range(18, 24):
if scores is not None and scores[i] < threshold:
continue
x, y = int(keypoints[i][0]), int(keypoints[i][1])
if 0 <= x < W and 0 <= y < H:
cv2.circle(canvas, (x, y), 4, colors[i % len(colors)], thickness=-1)
# Draw right hand
if len(keypoints) >= 113:
eps = 0.01
for ie, edge in enumerate(hand_edges):
idx1, idx2 = 92 + edge[0], 92 + edge[1]
if scores is not None:
if scores[idx1] < threshold or scores[idx2] < threshold:
continue
x1, y1 = int(keypoints[idx1][0]), int(keypoints[idx1][1])
x2, y2 = int(keypoints[idx2][0]), int(keypoints[idx2][1])
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
if 0 <= x1 < W and 0 <= y1 < H and 0 <= x2 < W and 0 <= y2 < H:
color = matplotlib.colors.hsv_to_rgb([ie / float(len(hand_edges)), 1.0, 1.0]) * 255
cv2.line(canvas, (x1, y1), (x2, y2), color, thickness=2)
for i in range(92, 113):
if scores is not None and scores[i] < threshold:
continue
x, y = int(keypoints[i][0]), int(keypoints[i][1])
if x > eps and y > eps and 0 <= x < W and 0 <= y < H:
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
# Draw left hand
if len(keypoints) >= 134:
eps = 0.01
for ie, edge in enumerate(hand_edges):
idx1, idx2 = 113 + edge[0], 113 + edge[1]
if scores is not None:
if scores[idx1] < threshold or scores[idx2] < threshold:
continue
x1, y1 = int(keypoints[idx1][0]), int(keypoints[idx1][1])
x2, y2 = int(keypoints[idx2][0]), int(keypoints[idx2][1])
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
if 0 <= x1 < W and 0 <= y1 < H and 0 <= x2 < W and 0 <= y2 < H:
color = matplotlib.colors.hsv_to_rgb([ie / float(len(hand_edges)), 1.0, 1.0]) * 255
cv2.line(canvas, (x1, y1), (x2, y2), color, thickness=2)
for i in range(113, 134):
if scores is not None and i < len(scores) and scores[i] < threshold:
continue
x, y = int(keypoints[i][0]), int(keypoints[i][1])
if x > eps and y > eps and 0 <= x < W and 0 <= y < H:
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
# Draw face keypoints
if len(keypoints) >= 92:
eps = 0.01
for i in range(24, 92):
if scores is not None and scores[i] < threshold:
continue
x, y = int(keypoints[i][0]), int(keypoints[i][1])
if x > eps and y > eps and 0 <= x < W and 0 <= y < H:
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
return canvas
def detect_person_yolo(image, yolo_model_path=None, confidence_threshold=0.5):
"""
Detect person using YOLO
Returns: List of bboxes [x1, y1, x2, y2] and whether YOLO was used
"""
if not YOLO_AVAILABLE:
print("β οΈ YOLO not available, using full image")
h, w = image.shape[:2]
return [[0, 0, w, h]], False
try:
print("π Using YOLO for person detection...")
# Load YOLO model
if yolo_model_path and os.path.exists(yolo_model_path):
print(f" Loading custom YOLO model: {yolo_model_path}")
model = YOLO(yolo_model_path)
else:
print(f" Loading default YOLOv8n model")
# Use default YOLOv8
model = YOLO('yolov8n.pt')
# Run detection
print(f" Running YOLO detection on image shape: {image.shape}")
results = model(image, verbose=False)
print(f" YOLO returned {len(results)} result(s)")
# Extract person detections (class 0 is person in COCO)
person_bboxes = []
for result in results:
boxes = result.boxes
print(f" Result has {len(boxes) if boxes is not None else 0} boxes")
if boxes is not None:
for box in boxes:
# Check if it's a person (class 0) and confidence is high enough
cls = int(box.cls[0].cpu().numpy())
conf = float(box.conf[0].cpu().numpy())
print(f" Box: class={cls}, conf={conf:.3f}")
if cls == 0 and conf > confidence_threshold:
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
print(f" β Person detected: bbox=[{x1:.1f}, {y1:.1f}, {x2:.1f}, {y2:.1f}]")
person_bboxes.append([float(x1), float(y1), float(x2), float(y2), conf])
if person_bboxes:
# Sort by confidence and return all
person_bboxes.sort(key=lambda x: x[4], reverse=True)
bboxes = [bbox[:4] for bbox in person_bboxes]
print(f"β
Detected {len(bboxes)} person(s)")
return bboxes, True
else:
print("β οΈ No person detected, using full image")
h, w = image.shape[:2]
return [[0, 0, w, h]], False
except Exception as e:
print(f"β οΈ YOLO detection failed: {e}, using full image")
h, w = image.shape[:2]
return [[0, 0, w, h]], False
def preprocess_image_for_sdpose(image, bbox=None, input_size=(768, 1024)):
"""Preprocess image for SDPose inference"""
if isinstance(image, np.ndarray):
if len(image.shape) == 3 and image.shape[2] == 3:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image_rgb = image
pil_image = Image.fromarray(image_rgb)
original_size = (image.shape[1], image.shape[0])
else:
pil_image = image
original_size = pil_image.size
crop_info = None
if bbox is not None:
x1, y1, x2, y2 = map(int, bbox)
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(pil_image.width, x2)
y2 = min(pil_image.height, y2)
if x2 > x1 and y2 > y1:
cropped_image = pil_image.crop((x1, y1, x2, y2))
crop_info = (x1, y1, x2 - x1, y2 - y1)
pil_image = cropped_image
else:
crop_info = (0, 0, pil_image.width, pil_image.height)
else:
crop_info = (0, 0, pil_image.width, pil_image.height)
transform_list = [
transforms.Resize((input_size[1], input_size[0])),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
val_transform = transforms.Compose(transform_list)
input_tensor = val_transform(pil_image).unsqueeze(0)
return input_tensor, original_size, crop_info
def restore_keypoints_to_original(keypoints, crop_info, input_size, original_size):
"""Restore keypoints from cropped/resized space to original image space"""
x1, y1, crop_w, crop_h = crop_info
input_w, input_h = input_size
scale_x = crop_w / input_w
scale_y = crop_h / input_h
keypoints_restored = keypoints.copy()
keypoints_restored[:, 0] = keypoints[:, 0] * scale_x + x1
keypoints_restored[:, 1] = keypoints[:, 1] * scale_y + y1
return keypoints_restored
def convert_to_openpose_json(all_keypoints, all_scores, image_width, image_height, keypoint_scheme="body"):
"""Convert keypoints to OpenPose JSON format"""
people = []
for person_idx, (keypoints, scores) in enumerate(zip(all_keypoints, all_scores)):
person_data = {}
if keypoint_scheme == "body":
pose_kpts = []
for i in range(min(17, len(keypoints))):
pose_kpts.extend([float(keypoints[i, 0]), float(keypoints[i, 1]), float(scores[i])])
while len(pose_kpts) < 17 * 3:
pose_kpts.extend([0.0, 0.0, 0.0])
person_data["pose_keypoints_2d"] = pose_kpts
person_data["hand_left_keypoints_2d"] = [0.0] * 63
person_data["hand_right_keypoints_2d"] = [0.0] * 63
person_data["face_keypoints_2d"] = [0.0] * 204
person_data["foot_keypoints_2d"] = [0.0] * 18
else:
# Wholebody
pose_kpts = []
for i in range(min(18, len(keypoints))):
pose_kpts.extend([float(keypoints[i, 0]), float(keypoints[i, 1]), float(scores[i])])
while len(pose_kpts) < 18 * 3:
pose_kpts.extend([0.0, 0.0, 0.0])
person_data["pose_keypoints_2d"] = pose_kpts
foot_kpts = []
for i in range(18, min(24, len(keypoints))):
foot_kpts.extend([float(keypoints[i, 0]), float(keypoints[i, 1]), float(scores[i])])
while len(foot_kpts) < 6 * 3:
foot_kpts.extend([0.0, 0.0, 0.0])
person_data["foot_keypoints_2d"] = foot_kpts
face_kpts = []
for i in range(24, min(92, len(keypoints))):
face_kpts.extend([float(keypoints[i, 0]), float(keypoints[i, 1]), float(scores[i])])
while len(face_kpts) < 68 * 3:
face_kpts.extend([0.0, 0.0, 0.0])
person_data["face_keypoints_2d"] = face_kpts
right_hand_kpts = []
for i in range(92, min(113, len(keypoints))):
right_hand_kpts.extend([float(keypoints[i, 0]), float(keypoints[i, 1]), float(scores[i])])
while len(right_hand_kpts) < 21 * 3:
right_hand_kpts.extend([0.0, 0.0, 0.0])
person_data["hand_right_keypoints_2d"] = right_hand_kpts
left_hand_kpts = []
for i in range(113, min(134, len(keypoints))):
left_hand_kpts.extend([float(keypoints[i, 0]), float(keypoints[i, 1]), float(scores[i])])
while len(left_hand_kpts) < 21 * 3:
left_hand_kpts.extend([0.0, 0.0, 0.0])
person_data["hand_left_keypoints_2d"] = left_hand_kpts
people.append(person_data)
result = {
"people": people,
"canvas_width": int(image_width),
"canvas_height": int(image_height)
}
return result
class SDPoseInference:
"""SDPose inference class with HF Hub loading"""
def __init__(self):
self.pipeline = None
self.device = None
self.model_loaded = False
self.keypoint_scheme = "body"
self.input_size = (768, 1024)
self.model_cache_dir = None
def load_model_from_hub(self, repo_id=None, keypoint_scheme="body"):
"""Load model from Hugging Face Hub"""
try:
if repo_id is None:
repo_id = MODEL_REPOS.get(keypoint_scheme, MODEL_REPOS["body"])
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.keypoint_scheme = keypoint_scheme
print(f"π Loading model from: {repo_id}")
print(f"π± Device: {self.device}")
# Download model from HF Hub
cache_dir = snapshot_download(
repo_id=repo_id,
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.model"],
cache_dir="./model_cache"
)
self.model_cache_dir = cache_dir
print(f"β
Model cached at: {cache_dir}")
# Load components
print("π§ Loading UNet...")
unet_path = os.path.join(cache_dir, "unet")
if os.path.exists(unet_path):
unet = UNet2DConditionModel.from_pretrained(
unet_path,
class_embed_type="projection",
projection_class_embeddings_input_dim=4,
)
else:
unet = UNet2DConditionModel.from_pretrained(
cache_dir,
subfolder="unet",
class_embed_type="projection",
projection_class_embeddings_input_dim=4,
)
unet = Modified_forward(unet, keypoint_scheme=keypoint_scheme)
print("β
UNet loaded")
print("π§ Loading VAE...")
vae_path = os.path.join(cache_dir, "vae")
if os.path.exists(vae_path):
vae = AutoencoderKL.from_pretrained(vae_path)
else:
vae = AutoencoderKL.from_pretrained(cache_dir, subfolder="vae")
print("β
VAE loaded")
print("π§ Loading Tokenizer...")
tokenizer_path = os.path.join(cache_dir, "tokenizer")
if os.path.exists(tokenizer_path):
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
else:
tokenizer = CLIPTokenizer.from_pretrained(cache_dir, subfolder="tokenizer")
print("β
Tokenizer loaded")
print("π§ Loading Text Encoder...")
text_encoder_path = os.path.join(cache_dir, "text_encoder")
if os.path.exists(text_encoder_path):
text_encoder = CLIPTextModel.from_pretrained(text_encoder_path)
else:
text_encoder = CLIPTextModel.from_pretrained(cache_dir, subfolder="text_encoder")
print("β
Text Encoder loaded")
print("π§ Loading Decoder...")
hm_decoder = get_heatmap_head(mode=keypoint_scheme)
decoder_file = os.path.join(cache_dir, "decoder", "decoder.safetensors")
if not os.path.exists(decoder_file):
decoder_file = os.path.join(cache_dir, "decoder.safetensors")
if os.path.exists(decoder_file):
hm_decoder.load_state_dict(load_file(decoder_file, device="cpu"), strict=True)
print("β
Decoder loaded")
else:
print("β οΈ Decoder weights not found, using default initialization")
print("π§ Loading Scheduler...")
scheduler_path = os.path.join(cache_dir, "scheduler")
if os.path.exists(scheduler_path):
noise_scheduler = DDPMScheduler.from_pretrained(scheduler_path)
else:
noise_scheduler = DDPMScheduler.from_pretrained(cache_dir, subfolder="scheduler")
print("β
Scheduler loaded")
# IMPORTANT: For zero_gpu, do NOT move to GPU in main process!
# Models will be moved to GPU inside @spaces.GPU decorated functions
print("β οΈ Keeping models on CPU (will move to GPU during inference)")
# Keep everything on CPU for now
self.unet_cpu = unet
self.vae_cpu = vae
self.text_encoder_cpu = text_encoder
self.hm_decoder_cpu = hm_decoder
self.tokenizer = tokenizer
self.noise_scheduler = noise_scheduler
# Create pipeline on CPU
self.pipeline = SDPose_D_Pipeline(
unet=unet,
vae=vae,
tokenizer=tokenizer,
text_encoder=text_encoder,
scheduler=noise_scheduler,
decoder=hm_decoder
)
# Enable xformers if available (will apply when moved to GPU)
if is_xformers_available():
try:
self.pipeline.unet.enable_xformers_memory_efficient_attention()
print("β
xformers enabled")
except:
pass
self.model_loaded = True
print("β
Model loaded on CPU!")
return True
except Exception as e:
print(f"β Error loading model: {e}")
import traceback
traceback.print_exc()
return False
def predict_image(self, image, enable_yolo=True, yolo_model_path=None,
score_threshold=0.3, restore_coords=True, flip_test=False, process_all_persons=True, overlay_alpha=0.6):
"""
Run inference on a single image (supports multi-person)
overlay_alpha: Opacity of pose+black background layer (0.0=invisible, 1.0=fully opaque)
Returns: (result_image, keypoints, scores, info_text, json_file_path)
"""
if not self.model_loaded or self.pipeline is None:
return None, None, None, "Model not loaded. Please load the model first.", None
try:
# Move models to GPU (only happens inside @spaces.GPU decorated function)
if self.device.type == 'cuda' and hasattr(self, 'unet_cpu'):
print("π Moving models to GPU...")
self.pipeline.unet = self.unet_cpu.to(self.device)
self.pipeline.vae = self.vae_cpu.to(self.device)
self.pipeline.text_encoder = self.text_encoder_cpu.to(self.device)
self.pipeline.decoder = self.hm_decoder_cpu.to(self.device)
print("β
Models on GPU")
# Handle image format: Gradio Image(type="numpy") returns RGB numpy array
if isinstance(image, np.ndarray):
original_image_rgb = image.copy()
else:
original_image_rgb = np.array(image)
# Convert to BGR for YOLO (YOLO expects BGR)
original_image_bgr = cv2.cvtColor(original_image_rgb, cv2.COLOR_RGB2BGR)
# Step 1: Person detection (if enabled)
bboxes_list = []
detection_info = ""
if enable_yolo:
print(f"π YOLO detection enabled (yolo_model_path: {yolo_model_path})")
bboxes, used_yolo = detect_person_yolo(original_image_bgr, yolo_model_path, confidence_threshold=0.5)
print(f" YOLO actually used: {used_yolo}, detected {len(bboxes)} person(s)")
if bboxes and len(bboxes) > 0:
bboxes_list = bboxes if process_all_persons else [bboxes[0]]
detection_info = f"Detected {len(bboxes)} person(s) by YOLO, processing {len(bboxes_list)}"
print(f"β
{detection_info}")
else:
bboxes_list = [None] # Process full image
detection_info = "No person detected by YOLO, using full image"
print(f"β οΈ {detection_info}")
else:
bboxes_list = [None] # Process full image
detection_info = "YOLO disabled, using full image"
print(f"β οΈ {detection_info}")
# Step 2-6: Process each person
# Create black canvas for all pose drawings
pose_canvas = np.zeros_like(original_image_rgb)
all_keypoints = []
all_scores = []
for person_idx, bbox in enumerate(bboxes_list):
print(f"\nπ€ Processing person {person_idx + 1}/{len(bboxes_list)}")
# Step 2: Preprocess image
print("π Preprocessing image...")
print(f" π¦ Bbox: {bbox}")
input_tensor, original_size, crop_info = preprocess_image_for_sdpose(
original_image_bgr, bbox, self.input_size
)
print(f" βοΈ Crop info: {crop_info}")
input_tensor = input_tensor.to(self.device)
# Step 3: Run inference
print("π Running SDPose inference...")
test_cfg = {'flip_test': False}
with torch.no_grad():
out = self.pipeline(
input_tensor,
timesteps=[999],
test_cfg=test_cfg,
show_progress_bar=False,
mode="inference",
)
# Extract keypoints and scores
heatmap_inst = out[0]
keypoints = heatmap_inst.keypoints[0] # (K, 2)
scores = heatmap_inst.keypoint_scores[0] # (K,)
# Convert to numpy
if torch.is_tensor(keypoints):
keypoints = keypoints.cpu().numpy()
if torch.is_tensor(scores):
scores = scores.cpu().numpy()
print(f"π Detected {len(keypoints)} keypoints")
# Step 4: Restore coordinates to original space
if restore_coords and bbox is not None:
keypoints_original = restore_keypoints_to_original(
keypoints, crop_info, self.input_size, original_size
)
else:
scale_x = original_size[0] / self.input_size[0]
scale_y = original_size[1] / self.input_size[1]
keypoints_original = keypoints.copy()
keypoints_original[:, 0] *= scale_x
keypoints_original[:, 1] *= scale_y
all_keypoints.append(keypoints_original)
all_scores.append(scores)
# Step 5: Draw keypoints for this person
print(f"π¨ Drawing keypoints for person {person_idx + 1}...")
if self.keypoint_scheme == "body":
if len(keypoints_original) >= 17:
# Draw on pose_canvas (black background, shared by all persons)
pose_canvas = draw_body17_keypoints_openpose_style(
pose_canvas, keypoints_original[:17], scores[:17],
threshold=score_threshold
)
else:
# Wholebody scheme
keypoints_with_neck = keypoints_original.copy()
scores_with_neck = scores.copy()
if len(keypoints_original) >= 17:
neck = (keypoints_original[5] + keypoints_original[6]) / 2
neck_score = min(scores[5], scores[6]) if scores[5] > 0.3 and scores[6] > 0.3 else 0
keypoints_with_neck = np.insert(keypoints_original, 17, neck, axis=0)
scores_with_neck = np.insert(scores, 17, neck_score)
mmpose_idx = np.array([17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3])
openpose_idx = np.array([1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17])
temp_kpts = keypoints_with_neck.copy()
temp_scores = scores_with_neck.copy()
temp_kpts[openpose_idx] = keypoints_with_neck[mmpose_idx]
temp_scores[openpose_idx] = scores_with_neck[mmpose_idx]
keypoints_with_neck = temp_kpts
scores_with_neck = temp_scores
# Draw on pose_canvas (black background, shared by all persons)
pose_canvas = draw_wholebody_keypoints_openpose_style(
pose_canvas, keypoints_with_neck, scores_with_neck,
threshold=score_threshold
)
# Blend original image with pose canvas after all persons are drawn
# overlay_alpha: transparency of (pose + black background) layer
# 0.0 = invisible (only original image), 1.0 = fully opaque (pose + black bg)
result_image = cv2.addWeighted(original_image_rgb, 1.0 - overlay_alpha, pose_canvas, overlay_alpha, 0)
# Create info text
info_text = self._create_info_text(
original_size, self.input_size, detection_info, bboxes_list[0] if len(bboxes_list) == 1 else None,
all_keypoints[0] if len(all_keypoints) > 0 else None,
all_scores[0] if len(all_scores) > 0 else None,
score_threshold,
len(bboxes_list)
)
# Generate JSON file
json_file_path = None
if all_keypoints and len(all_keypoints) > 0:
try:
# Convert to OpenPose JSON format
json_data = convert_to_openpose_json(
all_keypoints, all_scores,
original_size[0], original_size[1],
self.keypoint_scheme
)
# Save to temporary file
temp_json = tempfile.NamedTemporaryFile(
mode='w', suffix='.json', delete=False,
dir=tempfile.gettempdir()
)
json.dump(json_data, temp_json, indent=2)
json_file_path = temp_json.name
temp_json.close()
print(f"β
JSON file saved: {json_file_path}")
except Exception as e:
print(f"β οΈ Failed to generate JSON file: {e}")
json_file_path = None
print(f"β
Inference complete. Returning RGB result_image with shape: {result_image.shape}")
return result_image, all_keypoints, all_scores, info_text, json_file_path
except Exception as e:
print(f"Error during inference: {e}")
import traceback
traceback.print_exc()
return image, None, None, f"Error during inference: {str(e)}", None
def predict_video(self, video_path, output_path, enable_yolo=True,
yolo_model_path=None, score_threshold=0.3, flip_test=False, overlay_alpha=0.6, progress=gr.Progress()):
"""
Run inference on a video file
overlay_alpha: Opacity of pose+black background layer (0.0=invisible, 1.0=fully opaque)
Returns: (output_video_path, info_text)
"""
if not self.model_loaded or self.pipeline is None:
return None, "Model not loaded. Please load the model first."
try:
# Move models to GPU (only happens inside @spaces.GPU decorated function)
if self.device.type == 'cuda' and hasattr(self, 'unet_cpu'):
print("π Moving models to GPU...")
self.pipeline.unet = self.unet_cpu.to(self.device)
self.pipeline.vae = self.vae_cpu.to(self.device)
self.pipeline.text_encoder = self.text_encoder_cpu.to(self.device)
self.pipeline.decoder = self.hm_decoder_cpu.to(self.device)
print("β
Models on GPU")
# Open video
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, f"Error: Could not open video {video_path}"
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS))
if fps == 0:
fps = 30 # Default fallback
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"πΉ Processing video: {total_frames} frames at {fps} FPS, size {width}x{height}")
# Create video writer
# Use mp4v for initial encoding (will re-encode to H.264 later if needed)
print(f"π Creating VideoWriter with mp4v codec...")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# Ensure output path has .mp4 extension
actual_output_path = output_path
if not actual_output_path.endswith('.mp4'):
actual_output_path = output_path.rsplit('.', 1)[0] + '.mp4'
out = cv2.VideoWriter(actual_output_path, fourcc, fps, (width, height))
if not out.isOpened():
cap.release()
print(f"β Failed to open VideoWriter")
return None, f"Error: Could not create video writer"
print(f"β
VideoWriter opened successfully: {actual_output_path}")
frame_count = 0
processed_count = 0
# Process each frame
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Update progress
if progress is not None:
progress((frame_count, total_frames), desc=f"Processing frame {frame_count}/{total_frames}")
# Convert frame from BGR to RGB for predict_image
# cv2.VideoCapture reads in BGR format
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Run inference on frame (frame_rgb is RGB)
# Process all detected persons
result_frame, _, _, _, _ = self.predict_image(
frame_rgb, enable_yolo=enable_yolo, yolo_model_path=yolo_model_path,
score_threshold=score_threshold, restore_coords=True, flip_test=flip_test,
process_all_persons=True, overlay_alpha=overlay_alpha
)
if result_frame is not None:
# result_frame is RGB from predict_image, convert to BGR for video writing
result_frame_bgr = cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)
# Check frame size matches
if result_frame_bgr.shape[:2] != (height, width):
print(f"β οΈ Frame size mismatch: {result_frame_bgr.shape[:2]} vs expected ({height}, {width}), resizing...")
result_frame_bgr = cv2.resize(result_frame_bgr, (width, height))
out.write(result_frame_bgr)
processed_count += 1
else:
# If inference failed, write original frame (already BGR)
print(f"β οΈ Frame {frame_count} inference failed, using original")
out.write(frame)
if frame_count % 30 == 0:
print(f"Processed {frame_count}/{total_frames} frames, written {processed_count}")
cap.release()
out.release()
# Ensure the video file is properly written and flushed
# Small delay to ensure file system has finished writing
import time
time.sleep(0.5)
# Verify the output file exists and has content
if not os.path.exists(actual_output_path):
return None, f"Error: Output video file was not created at {actual_output_path}"
file_size = os.path.getsize(actual_output_path)
if file_size == 0:
return None, f"Error: Output video file is empty (0 bytes)"
print(f"β
Video file created: {actual_output_path} ({file_size} bytes)")
# If we used mp4v codec, try to re-encode to H.264 for better browser compatibility
final_output_path = actual_output_path
if actual_output_path.endswith('.mp4'):
try:
import subprocess
print("π Re-encoding video to H.264 for better browser compatibility...")
# Create a new temp file for H.264 version
h264_path = actual_output_path.rsplit('.', 1)[0] + '_h264.mp4'
# Use ffmpeg to re-encode
cmd = [
'ffmpeg', '-y', '-i', actual_output_path,
'-c:v', 'libx264', '-preset', 'fast',
'-crf', '23', '-pix_fmt', 'yuv420p',
h264_path
]
result = subprocess.run(cmd, capture_output=True, timeout=300)
if result.returncode == 0 and os.path.exists(h264_path):
h264_size = os.path.getsize(h264_path)
if h264_size > 0:
print(f"β
Re-encoded to H.264: {h264_path} ({h264_size} bytes)")
# Use the H.264 version
final_output_path = h264_path
file_size = h264_size
# Remove the original mp4v version
try:
os.unlink(actual_output_path)
except:
pass
else:
print(f"β οΈ Re-encoded file is empty, using original")
else:
print(f"β οΈ Re-encoding failed, using original mp4v version")
if result.stderr:
print(f" ffmpeg error: {result.stderr.decode()[:200]}")
except subprocess.TimeoutExpired:
print(f"β οΈ Re-encoding timed out, using original")
except Exception as e:
print(f"β οΈ Re-encoding failed: {e}, using original")
info_text = f"β
Video processing complete!\n"
info_text += f"π Total frames: {total_frames}\n"
info_text += f"β Processed: {processed_count}\n"
info_text += f"ποΈ FPS: {fps}\n"
info_text += f"π Resolution: {width}x{height}\n"
info_text += f"πΎ File size: {file_size / (1024*1024):.2f} MB\n"
info_text += f"πΎ Output saved to: {final_output_path}"
print(info_text)
return final_output_path, info_text
except Exception as e:
print(f"Error during video inference: {e}")
import traceback
traceback.print_exc()
return None, f"Error during video inference: {str(e)}"
def _create_info_text(self, original_size, input_size, detection_info, bbox,
keypoints, scores, threshold, num_persons=1):
"""Create informative text about the inference results"""
info_text = "π― SDPose Keypoint Detection Results\n" + "="*60 + "\n"
info_text += f"π Original Image Size: {original_size}\n"
info_text += f"π§ Model Input Size: {input_size}\n"
info_text += f"π§ Keypoint Scheme: {self.keypoint_scheme}\n"
info_text += f"π Detection: {detection_info}\n"
info_text += f"π₯ Number of Persons Processed: {num_persons}\n"
if bbox:
info_text += f"π¦ Bounding Box (first person): [{int(bbox[0])}, {int(bbox[1])}, {int(bbox[2])}, {int(bbox[3])}]\n"
info_text += f"ποΈ Score Threshold: {threshold}\n"
info_text += "="*60 + "\n\n"
# Count detected keypoints (for first person if available)
if keypoints is not None and scores is not None:
detected_count = np.sum(scores >= threshold)
total_count = len(scores)
info_text += f"π Summary (first person): {detected_count}/{total_count} keypoints detected above threshold\n"
info_text += f"π¨ Visualization: Openpose style\n"
info_text += f"π Coordinates: Restored to original image space\n"
return info_text
# Global instances for both models
inference_engines = {
"body": SDPoseInference(),
"wholebody": SDPoseInference()
}
def switch_model(model_type):
"""Switch between models"""
if not inference_engines[model_type].model_loaded:
print(f"π Loading {model_type} model...")
success = inference_engines[model_type].load_model_from_hub(keypoint_scheme=model_type)
if success:
return f"β
{model_type.capitalize()} model loaded!"
else:
return f"β Failed to load {model_type} model"
else:
return f"β
{model_type.capitalize()} model ready"
@spaces.GPU(duration=120)
def run_inference_image(image, model_type, enable_yolo, score_threshold, overlay_alpha):
"""Image inference interface with zero_gpu support"""
if image is None:
return None, None, "Please upload an image"
if not inference_engines[model_type].model_loaded:
status = switch_model(model_type)
if "Failed" in status:
return image, None, status
result_image, _, _, info_text, json_file = inference_engines[model_type].predict_image(
image, enable_yolo=enable_yolo,
score_threshold=score_threshold, overlay_alpha=overlay_alpha
)
return result_image, json_file, info_text
@spaces.GPU(duration=600)
def run_inference_video(video, model_type, enable_yolo, score_threshold, overlay_alpha, progress=gr.Progress()):
"""Video inference interface with zero_gpu support"""
if video is None:
return None, None, "Please upload a video"
if not inference_engines[model_type].model_loaded:
status = switch_model(model_type)
if "Failed" in status:
return None, None, status
temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
output_path = temp_file.name
temp_file.close()
result_video, info_text = inference_engines[model_type].predict_video(
video, output_path, enable_yolo=enable_yolo,
score_threshold=score_threshold, overlay_alpha=overlay_alpha,
progress=progress
)
if result_video and os.path.exists(result_video):
return result_video, result_video, info_text
else:
return None, None, info_text
def create_gradio_interface():
"""Create Gradio interface"""
logo_path = "assets/logo/logo.png"
with gr.Blocks(title="SDPose - Gradio Interface", theme=gr.themes.Soft()) as demo:
with gr.Row(elem_classes="header-row"):
with gr.Column(scale=1, min_width=150):
gr.Image(value=str(logo_path), show_label=False, show_download_button=False,
show_share_button=False, container=False, height=150, width=150,
interactive=False, show_fullscreen_button=False)
with gr.Column(scale=9):
gr.HTML("""
<div style="text-align: left; padding: 10px;">
<h1 style="margin-bottom: 20px; font-size: 2.2em; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">
SDPose: Exploiting Diffusion Priors for Out-of-Domain and Robust Pose Estimation
</h1>
<div style="display: flex; gap: 12px; flex-wrap: wrap; margin-top: 15px;">
<a href="https://arxiv.org/abs/2509.24980" target="_blank"
style="display: inline-block; padding: 10px 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white !important; border-radius: 8px; font-weight: 600; text-decoration: none !important; box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4); transition: all 0.3s ease; cursor: pointer;"
onmouseover="this.style.transform='translateY(-2px)'; this.style.boxShadow='0 6px 16px rgba(102, 126, 234, 0.5)';"
onmouseout="this.style.transform='translateY(0)'; this.style.boxShadow='0 4px 12px rgba(102, 126, 234, 0.4)';">
π Paper
</a>
<a href="https://github.com/T-S-Liang/SDPose-OOD" target="_blank"
style="display: inline-block; padding: 10px 20px; background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); color: white !important; border-radius: 8px; font-weight: 600; text-decoration: none !important; box-shadow: 0 4px 12px rgba(245, 87, 108, 0.4); transition: all 0.3s ease; cursor: pointer;"
onmouseover="this.style.transform='translateY(-2px)'; this.style.boxShadow='0 6px 16px rgba(245, 87, 108, 0.5)';"
onmouseout="this.style.transform='translateY(0)'; this.style.boxShadow='0 4px 12px rgba(245, 87, 108, 0.4)';">
π» GitHub
</a>
<a href="https://huggingface.co/teemosliang/SDPose-Body" target="_blank"
style="display: inline-block; padding: 10px 20px; background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%); color: white !important; border-radius: 8px; font-weight: 600; text-decoration: none !important; box-shadow: 0 4px 12px rgba(79, 172, 254, 0.4); transition: all 0.3s ease; cursor: pointer;"
onmouseover="this.style.transform='translateY(-2px)'; this.style.boxShadow='0 6px 16px rgba(79, 172, 254, 0.5)';"
onmouseout="this.style.transform='translateY(0)'; this.style.boxShadow='0 4px 12px rgba(79, 172, 254, 0.4)';">
π€ Body Model
</a>
<a href="https://huggingface.co/teemosliang/SDPose-Wholebody" target="_blank"
style="display: inline-block; padding: 10px 20px; background: linear-gradient(135deg, #43e97b 0%, #38f9d7 100%); color: white !important; border-radius: 8px; font-weight: 600; text-decoration: none !important; box-shadow: 0 4px 12px rgba(67, 233, 123, 0.4); transition: all 0.3s ease; cursor: pointer;"
onmouseover="this.style.transform='translateY(-2px)'; this.style.boxShadow='0 6px 16px rgba(67, 233, 123, 0.5)';"
onmouseout="this.style.transform='translateY(0)'; this.style.boxShadow='0 4px 12px rgba(67, 233, 123, 0.4)';">
π€ WholeBody Model
</a>
</div>
</div>
""")
with gr.Row():
with gr.Column():
gr.Markdown("### βοΈ Settings")
model_type = gr.Radio(
choices=["body", "wholebody"],
value="body",
label="Model Selection",
info="Body (17 kpts) or WholeBody (133 kpts)"
)
model_status = gr.Textbox(
label="Model Status",
value="Select model and upload media",
interactive=False
)
enable_yolo = gr.Checkbox(
label="Enable YOLO Detection",
value=True,
info="For multi-person detection"
)
score_threshold = gr.Slider(
minimum=0.1, maximum=0.9, value=0.3, step=0.05,
label="Confidence Threshold"
)
overlay_alpha = gr.Slider(
minimum=0.0, maximum=1.0, value=0.6, step=0.05,
label="Pose Overlay Opacity"
)
with gr.Column():
with gr.Tabs():
with gr.Tab("π· Image"):
with gr.Row():
input_image = gr.Image(label="Input Image", type="numpy", height=400)
output_image = gr.Image(label="Output with Keypoints", height=400)
with gr.Row():
output_json = gr.File(label="π₯ Download JSON", scale=1)
image_info = gr.Textbox(label="Detection Results", lines=6, max_lines=10, scale=1)
run_image_btn = gr.Button("π Run Image Inference", variant="primary", size="lg")
with gr.Tab("π¬ Video"):
with gr.Row():
input_video = gr.Video(label="Input Video", height=400)
output_video = gr.Video(label="Output Video with Keypoints", height=400)
with gr.Row():
output_video_file = gr.File(label="π₯ Download Processed Video", scale=1)
video_info = gr.Textbox(label="Processing Results", lines=6, max_lines=10, scale=1)
run_video_btn = gr.Button("π¬ Run Video Inference", variant="primary", size="lg")
gr.Markdown("""
### π Usage
1. Select model (Body or WholeBody)
2. Upload image or video
3. Configure settings
4. Click Run button
5. Download results
### β οΈ Notes
- First load may take 1-2 minutes
- YOLO-det recommended for multi-person
- Video processing may be slow on CPU
""")
# Events
model_type.change(
fn=switch_model,
inputs=[model_type],
outputs=[model_status]
)
run_image_btn.click(
fn=run_inference_image,
inputs=[input_image, model_type, enable_yolo, score_threshold, overlay_alpha],
outputs=[output_image, output_json, image_info]
)
run_video_btn.click(
fn=run_inference_video,
inputs=[input_video, model_type, enable_yolo, score_threshold, overlay_alpha],
outputs=[output_video, output_video_file, video_info]
)
return demo
# Pre-load body model
print("=" * 60)
print("π SDPose Space Starting...")
print("=" * 60)
if SPACES_ZERO_GPU:
print("β
zero_gpu enabled")
else:
print("β οΈ zero_gpu disabled (running on standard hardware)")
print("π Pre-loading Body model...")
success = inference_engines["body"].load_model_from_hub(keypoint_scheme="body")
if success:
print("β
Body model ready!")
else:
print("β οΈ Body model will load on demand")
print("βΉοΈ WholeBody model will load when selected")
print("=" * 60)
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch()
|