File size: 5,098 Bytes
d5532b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.


from copy import deepcopy
from typing import Any, Callable, List, Tuple, Union

from mmengine.dataset import BaseDataset
from mmengine.registry import build_from_cfg

from mmpose.registry import DATASETS
from .datasets.utils import parse_pose_metainfo


@DATASETS.register_module()
class CombinedDataset(BaseDataset):
    """A wrapper of combined dataset.

    Args:
        metainfo (dict): The meta information of combined dataset.
        datasets (list): The configs of datasets to be combined.
        pipeline (list, optional): Processing pipeline. Defaults to [].
    """

    def __init__(self,
                 metainfo: dict,
                 datasets: list,
                 pipeline: List[Union[dict, Callable]] = [],
                 **kwargs):

        self.datasets = []

        for cfg in datasets:
            dataset = build_from_cfg(cfg, DATASETS)
            self.datasets.append(dataset)

        self._lens = [len(dataset) for dataset in self.datasets]
        self._len = sum(self._lens)

        super(CombinedDataset, self).__init__(pipeline=pipeline, **kwargs)
        self._metainfo = parse_pose_metainfo(metainfo)

    @property
    def metainfo(self):
        return deepcopy(self._metainfo)

    def __len__(self):
        return self._len

    def _get_subset_index(self, index: int) -> Tuple[int, int]:
        """Given a data sample's global index, return the index of the sub-
        dataset the data sample belongs to, and the local index within that
        sub-dataset.

        Args:
            index (int): The global data sample index

        Returns:
            tuple[int, int]:
            - subset_index (int): The index of the sub-dataset
            - local_index (int): The index of the data sample within
                the sub-dataset
        """
        if index >= len(self) or index < -len(self):
            raise ValueError(
                f'index({index}) is out of bounds for dataset with '
                f'length({len(self)}).')

        if index < 0:
            index = index + len(self)

        subset_index = 0
        while index >= self._lens[subset_index]:
            index -= self._lens[subset_index]
            subset_index += 1
        return subset_index, index

    def prepare_data(self, idx: int) -> Any:
        """Get data processed by ``self.pipeline``.The source dataset is
        depending on the index.

        Args:
            idx (int): The index of ``data_info``.

        Returns:
            Any: Depends on ``self.pipeline``.
        """
        data_info = self.get_data_info(idx)

        ## check if sample belongs to the goliath dataset
        subset_idx, sample_idx = self._get_subset_index(idx)
        transformed_data_info = self.pipeline(data_info)

        if self.test_mode == False and 'data_samples' in transformed_data_info and 'gt_instance_labels' in transformed_data_info['data_samples'] and \
            'keypoints_visible' in transformed_data_info['data_samples'].gt_instance_labels:
            num_transformed_keypoints = transformed_data_info['data_samples'].gt_instance_labels['keypoints_visible'].sum().item() ## after cropping

            ## minimum visible keypoints for coco_wholebody is 8
            if self.datasets[subset_idx].metainfo['dataset_name'] == 'coco_wholebody':
                if num_transformed_keypoints < 8:
                    return None

            ## if sample is from the goliath dataset, general minimum visible keypoints is 8
            if self.datasets[subset_idx].metainfo['dataset_name'] == 'goliath':
                if num_transformed_keypoints < 8:
                    return None ## we return None, then the base_dataset will return another random sample

            ## general minimum visible keypoints is 4
            if num_transformed_keypoints < 4:
                return None

        return transformed_data_info

    def get_data_info(self, idx: int) -> dict:
        """Get annotation by index.

        Args:
            idx (int): Global index of ``CombinedDataset``.
        Returns:
            dict: The idx-th annotation of the datasets.
        """
        subset_idx, sample_idx = self._get_subset_index(idx)
        # Get data sample processed by ``subset.pipeline``
        data_info = self.datasets[subset_idx][sample_idx]

        # Add metainfo items that are required in the pipeline and the model
        metainfo_keys = [
            'upper_body_ids', 'lower_body_ids', 'flip_pairs',
            'dataset_keypoint_weights', 'flip_indices'
        ]

        for key in metainfo_keys:
            data_info[key] = deepcopy(self._metainfo[key])

        return data_info

    def full_init(self):
        """Fully initialize all sub datasets."""

        if self._fully_initialized:
            return

        for dataset in self.datasets:
            dataset.full_init()
        self._fully_initialized = True