Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,110 Bytes
d5532b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import datetime
from typing import Dict, Optional, Sequence
import numpy as np
import os
from mmpose.registry import METRICS
from .coco_metric import CocoMetric
import os.path as osp
import tempfile
from collections import OrderedDict, defaultdict
from mmengine.evaluator import BaseMetric
from mmengine.fileio import dump, get_local_path, load
from mmengine.logging import MMLogger
from xtcocotools.coco import COCO
from xtcocotools.cocoeval import COCOeval
from ..functional import oks_nms, soft_oks_nms
from .coco_wholebody_metric import CocoWholeBodyMetric
from mmpose.datasets.datasets.utils import parse_pose_metainfo
try:
from configs._base_.datasets.coco_wholebody import dataset_info as coco_wholebody_dataset_meta
coco_wholebody_dataset_meta = parse_pose_metainfo(coco_wholebody_dataset_meta)
except Exception as e:
pass
@METRICS.register_module()
class GoliathCocoWholeBodyMetric(CocoMetric):
"""
"""
default_prefix: Optional[str] = 'goliath'
body_num = 17
foot_num = 6
face_num = 238
left_hand_num = 20
right_hand_num = 20
remaining_extra_num = 7 ## total to 308
def __init__(self,
ann_file: Optional[str] = None,
coco_wholebody_ann_file: Optional[str] = None,
use_area: bool = True,
iou_type: str = 'keypoints',
score_mode: str = 'bbox_keypoint',
keypoint_score_thr: float = 0.2,
nms_mode: str = 'oks_nms',
nms_thr: float = 0.9,
format_only: bool = False,
outfile_prefix: Optional[str] = None,
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(ann_file, use_area, iou_type, score_mode, keypoint_score_thr, nms_mode,\
nms_thr, format_only, outfile_prefix, collect_device, prefix)
self.coco_wholebody_metric = CocoWholeBodyMetric(coco_wholebody_ann_file, use_area, iou_type, score_mode, keypoint_score_thr, \
nms_mode, nms_thr, format_only, outfile_prefix, collect_device, 'coco-wholebody')
self.coco_wholebody_metric._dataset_meta = coco_wholebody_dataset_meta
self.coco_wholebody_num_keypoints = self.coco_wholebody_metric._dataset_meta['num_keypoints']
self.goliath_num_images = len(self.coco.getImgIds())
self.coco_wholebody_num_images = len(self.coco_wholebody_metric.coco.getImgIds())
## uncomment to debug
# self.goliath_num_images = 16
# self.coco_wholebody_num_images = 16
return
def gt_to_coco_json(self, gt_dicts: Sequence[dict],
outfile_prefix: str) -> str:
"""
"""
image_infos = []
annotations = []
img_ids = []
ann_ids = []
for gt_dict in gt_dicts:
# filter duplicate image_info
if gt_dict['img_id'] not in img_ids:
image_info = dict(
id=gt_dict['img_id'],
width=gt_dict['width'],
height=gt_dict['height'],
)
if self.iou_type == 'keypoints_crowd':
image_info['crowdIndex'] = gt_dict['crowd_index']
image_infos.append(image_info)
img_ids.append(gt_dict['img_id'])
# filter duplicate annotations
for ann in gt_dict['raw_ann_info']:
annotation = dict(
id=ann['id'],
image_id=ann['image_id'],
category_id=ann['category_id'],
bbox=ann['bbox'],
keypoints=ann['keypoints'],
foot_kpts=ann['foot_kpts'],
face_kpts=ann['face_kpts'],
lefthand_kpts=ann['lefthand_kpts'],
righthand_kpts=ann['righthand_kpts'],
iscrowd=ann['iscrowd'],
)
if self.use_area:
assert 'area' in ann, \
'`area` is required when `self.use_area` is `True`'
annotation['area'] = ann['area']
annotations.append(annotation)
ann_ids.append(ann['id'])
info = dict(
date_created=str(datetime.datetime.now()),
description='Coco json file converted by mmpose CocoMetric.')
coco_json: dict = dict(
info=info,
images=image_infos,
categories=self.dataset_meta['CLASSES'],
licenses=None,
annotations=annotations,
)
converted_json_path = f'{outfile_prefix}.gt.json'
dump(coco_json, converted_json_path, sort_keys=True, indent=4)
return converted_json_path
def convert_results_goliath_to_coco_wholebody(self, results: list) -> list:
"""Convert the results of Goliath to COCO-WholeBody format.
Args:
results (list): The processed results of each batch.
Returns:
list: The converted results.
"""
# split prediction and gt list
preds, gts = zip(*results) ## gts are don't care here
coco_wholebody_to_goliath_mapping = self.dataset_meta['coco_wholebody_to_goliath_mapping'] ## coco_wholebody_index to goliath_index mapping
coco_wholebody_indexes, goliath_indexes = zip(*[(k, v) for k, v in coco_wholebody_to_goliath_mapping.items()])
for pred in preds:
goliath_keypoints = pred['keypoints'] ## 1 x 308 x 2
goliath_keypoint_scores = pred['keypoint_scores'] ## 1 x 308
num_detections = goliath_keypoints.shape[0]
coco_wholebody_keypoints = np.zeros((num_detections, self.coco_wholebody_num_keypoints, 2))
coco_wholebody_keypoint_scores = np.zeros((num_detections, self.coco_wholebody_num_keypoints))
coco_wholebody_keypoints[:, coco_wholebody_indexes, :] = goliath_keypoints[:, goliath_indexes, :]
coco_wholebody_keypoint_scores[:, coco_wholebody_indexes] = goliath_keypoint_scores[:, goliath_indexes]
pred['keypoints'] = coco_wholebody_keypoints
pred['keypoint_scores'] = coco_wholebody_keypoint_scores
# combine the predictions and ground truths
results = list(zip(preds, gts))
return results
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
print(f'goliath num images:{self.goliath_num_images}, coco_wholebody num images:{self.coco_wholebody_num_images}, results length:{len(results)}')
assert len(results) > self.goliath_num_images
results_goliath = results[:self.goliath_num_images]
results_coco_wholebody = self.convert_results_goliath_to_coco_wholebody(results[self.goliath_num_images:])
# Print goliath metrics in orange
print('\033[38;5;208m' + '-----------------------------------start goliath eval------------------------------------------'+ '\033[0m')
goliath_metrics = self.compute_goliath_metrics(results_goliath)
print('\033[38;5;208m' + '-----------------------------------end goliath eval------------------------------------------' + '\033[0m')
# Print coco_wholebody metrics in green
print('\033[32m' + '-----------------------------------start coco_wholebody eval------------------------------------------'+ '\033[0m')
coco_wholebody_metrics = self.coco_wholebody_metric.compute_metrics(results_coco_wholebody)
print('\033[32m' + '-----------------------------------end coco_wholebody eval------------------------------------------' + '\033[0m')
metrics = goliath_metrics.copy()
for metric_name, metric_value in coco_wholebody_metrics.items():
metrics[f'coco_wholebody_{metric_name}'] = metric_value
return metrics
def compute_goliath_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
# split prediction and gt list
preds, gts = zip(*results)
tmp_dir = None
if self.outfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
outfile_prefix = osp.join(tmp_dir.name, 'results')
else:
outfile_prefix = self.outfile_prefix
if self.coco is None:
# use converted gt json file to initialize coco helper
logger.info('Converting ground truth to coco format...')
coco_json_path = self.gt_to_coco_json(
gt_dicts=gts, outfile_prefix=outfile_prefix)
self.coco = COCO(coco_json_path)
kpts = defaultdict(list)
# group the preds by img_id
for pred in preds:
img_id = pred['img_id']
assert pred['img_id'] == pred['id']
for idx in range(len(pred['keypoints'])):
instance = {
'id': pred['id'],
'img_id': pred['img_id'],
'category_id': pred['category_id'],
'keypoints': pred['keypoints'][idx],
'keypoint_scores': pred['keypoint_scores'][idx],
'bbox_score': pred['bbox_scores'][idx],
}
if 'areas' in pred:
instance['area'] = pred['areas'][idx]
else:
# use keypoint to calculate bbox and get area
keypoints = pred['keypoints'][idx]
area = (
np.max(keypoints[:, 0]) - np.min(keypoints[:, 0])) * (
np.max(keypoints[:, 1]) - np.min(keypoints[:, 1]))
instance['area'] = area
kpts[img_id].append(instance)
# sort keypoint results according to id and remove duplicate ones
kpts = self._sort_and_unique_bboxes(kpts, key='id')
# score the prediction results according to `score_mode`
# and perform NMS according to `nms_mode`
valid_kpts = defaultdict(list)
num_keypoints = self.dataset_meta['num_keypoints']
for img_id, instances in kpts.items():
for instance in instances:
# concatenate the keypoint coordinates and scores
instance['keypoints'] = np.concatenate([
instance['keypoints'], instance['keypoint_scores'][:, None]
], axis=-1)
if self.score_mode == 'bbox':
instance['score'] = instance['bbox_score']
elif self.score_mode == 'keypoint':
instance['score'] = np.mean(instance['keypoint_scores'])
else:
bbox_score = instance['bbox_score']
if self.score_mode == 'bbox_rle':
keypoint_scores = instance['keypoint_scores']
instance['score'] = float(bbox_score +
np.mean(keypoint_scores) +
np.max(keypoint_scores))
else: # self.score_mode == 'bbox_keypoint':
mean_kpt_score = 0
valid_num = 0
for kpt_idx in range(num_keypoints):
kpt_score = instance['keypoint_scores'][kpt_idx]
if kpt_score > self.keypoint_score_thr:
mean_kpt_score += kpt_score
valid_num += 1
if valid_num != 0:
mean_kpt_score /= valid_num
instance['score'] = bbox_score * mean_kpt_score
# perform nms
if self.nms_mode == 'none':
valid_kpts[img_id] = instances
else:
nms = oks_nms if self.nms_mode == 'oks_nms' else soft_oks_nms
keep = nms(
instances,
self.nms_thr,
sigmas=self.dataset_meta['sigmas'])
valid_kpts[img_id] = [instances[_keep] for _keep in keep]
# convert results to coco style and dump into a json file
self.results2json(valid_kpts, outfile_prefix=outfile_prefix)
# only format the results without doing quantitative evaluation
if self.format_only:
logger.info('results are saved in '
f'{osp.dirname(outfile_prefix)}')
return {}
# evaluation results
eval_results = OrderedDict()
logger.info(f'Evaluating {self.__class__.__name__}...')
info_str = self._do_python_keypoint_eval(outfile_prefix)
name_value = OrderedDict(info_str)
eval_results.update(name_value)
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results
def results2json(self, keypoints: Dict[int, list],
outfile_prefix: str) -> str:
"""Dump the keypoint detection results to a COCO style json file.
Args:
keypoints (Dict[int, list]): Keypoint detection results
of the dataset.
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json files will be named
"somepath/xxx.keypoints.json",
Returns:
str: The json file name of keypoint results.
"""
# the results with category_id
cat_id = 1
cat_results = []
self.goliath_info = self.coco.__dict__['dataset']['info']['goliath_info']
self.body_keypoint_ids = self.goliath_info['body_keypoint_ids']
self.foot_keypoint_ids = self.goliath_info['foot_keypoint_ids']
self.face_keypoint_ids = self.goliath_info['face_keypoint_ids']
self.left_hand_keypoint_ids = self.goliath_info['left_hand_keypoint_ids']
self.right_hand_keypoint_ids = self.goliath_info['right_hand_keypoint_ids']
assert len(self.body_keypoint_ids) == self.body_num
assert len(self.foot_keypoint_ids) == self.foot_num
assert len(self.face_keypoint_ids) == self.face_num
assert len(self.left_hand_keypoint_ids) == self.left_hand_num
assert len(self.right_hand_keypoint_ids) == self.right_hand_num
for _, img_kpts in keypoints.items():
_keypoints = np.array(
[img_kpt['keypoints'] for img_kpt in img_kpts])
num_keypoints = self.dataset_meta['num_keypoints']
# collect all the person keypoints in current image
_body_keypoints = _keypoints[:, self.body_keypoint_ids].copy() ## get only body keypoints
_foot_keypoints = _keypoints[:, self.foot_keypoint_ids].copy() ## get only foot keypoints
_face_keypoints = _keypoints[:, self.face_keypoint_ids].copy() ## get only face keypoints
_left_hand_keypoints = _keypoints[:, self.left_hand_keypoint_ids].copy() ## get only left hand keypoints
_right_hand_keypoints = _keypoints[:, self.right_hand_keypoint_ids].copy() ## get only right hand keypoints
_keypoints = _keypoints.reshape(-1, num_keypoints * 3) ## flatten
_body_keypoints = _body_keypoints.reshape(-1, self.body_num * 3) ## flatten
_foot_keypoints = _foot_keypoints.reshape(-1, self.foot_num * 3) ## flatten
_face_keypoints = _face_keypoints.reshape(-1, self.face_num * 3) ## flatten
_left_hand_keypoints = _left_hand_keypoints.reshape(-1, self.left_hand_num * 3) ## flatten
_right_hand_keypoints = _right_hand_keypoints.reshape(-1, self.right_hand_num * 3) ## flatten
result = [{
'image_id': img_kpt['img_id'],
'category_id': cat_id,
'goliath_wholebody_kpts': _keypoint.tolist(), ## all keypoints. Modified in xtcocotools
'keypoints': _body_keypoint.tolist(), ## xtcocotools treats this as body keypoints, 17 default
'foot_kpts': _foot_keypoint.tolist(),
'face_kpts': _face_keypoint.tolist(),
'lefthand_kpts': _left_hand_keypoint.tolist(),
'righthand_kpts': _right_hand_keypoint.tolist(),
'score': float(img_kpt['score']),
} for img_kpt, _keypoint, _body_keypoint, _foot_keypoint, _face_keypoint, \
_left_hand_keypoint, _right_hand_keypoint in zip(img_kpts, _keypoints, \
_body_keypoints, _foot_keypoints, _face_keypoints, \
_left_hand_keypoints, _right_hand_keypoints)]
cat_results.extend(result)
res_file = f'{outfile_prefix}.keypoints.json'
dump(cat_results, res_file, sort_keys=True, indent=4)
def _do_python_keypoint_eval(self, outfile_prefix: str) -> list:
"""Do keypoint evaluation using COCOAPI.
Args:
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json files will be named
"somepath/xxx.keypoints.json",
Returns:
list: a list of tuples. Each tuple contains the evaluation stats
name and corresponding stats value.
"""
res_file = f'{outfile_prefix}.keypoints.json'
coco_det = self.coco.loadRes(res_file)
sigmas = self.dataset_meta['sigmas']
self.goliath_info = self.coco.__dict__['dataset']['info']['goliath_info']
self.body_keypoint_ids = self.goliath_info['body_keypoint_ids']
self.foot_keypoint_ids = self.goliath_info['foot_keypoint_ids']
self.face_keypoint_ids = self.goliath_info['face_keypoint_ids']
self.left_hand_keypoint_ids = self.goliath_info['left_hand_keypoint_ids']
self.right_hand_keypoint_ids = self.goliath_info['right_hand_keypoint_ids']
assert len(self.body_keypoint_ids) == self.body_num
assert len(self.foot_keypoint_ids) == self.foot_num
assert len(self.face_keypoint_ids) == self.face_num
assert len(self.left_hand_keypoint_ids) == self.left_hand_num
assert len(self.right_hand_keypoint_ids) == self.right_hand_num
coco_eval = COCOeval(
self.coco,
coco_det,
'keypoints_body',
sigmas[self.body_keypoint_ids],
use_area=True)
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_eval = COCOeval(
self.coco,
coco_det,
'keypoints_foot',
sigmas[self.foot_keypoint_ids],
use_area=True)
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_eval = COCOeval(
self.coco,
coco_det,
'keypoints_face',
sigmas[self.face_keypoint_ids],
use_area=True)
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_eval = COCOeval(
self.coco,
coco_det,
'keypoints_lefthand',
sigmas[self.left_hand_keypoint_ids],
use_area=True)
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_eval = COCOeval(
self.coco,
coco_det,
'keypoints_righthand',
sigmas[self.right_hand_keypoint_ids],
use_area=True)
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_eval = COCOeval(
self.coco, coco_det, 'keypoints_wholebody_goliath', sigmas, use_area=True)
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
stats_names = [
'AP', 'AP .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
'AR .75', 'AR (M)', 'AR (L)'
]
info_str = list(zip(stats_names, coco_eval.stats))
return info_str
|