Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import copy | |
| import platform | |
| import random | |
| import numpy as np | |
| import torch | |
| from mmengine import build_from_cfg, is_seq_of | |
| from mmengine.dataset import ConcatDataset, RepeatDataset | |
| from mmpose.registry import DATASETS | |
| if platform.system() != 'Windows': | |
| # https://github.com/pytorch/pytorch/issues/973 | |
| import resource | |
| rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) | |
| base_soft_limit = rlimit[0] | |
| hard_limit = rlimit[1] | |
| soft_limit = min(max(4096, base_soft_limit), hard_limit) | |
| resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) | |
| def _concat_dataset(cfg, default_args=None): | |
| types = cfg['type'] | |
| ann_files = cfg['ann_file'] | |
| img_prefixes = cfg.get('img_prefix', None) | |
| dataset_infos = cfg.get('dataset_info', None) | |
| num_joints = cfg['data_cfg'].get('num_joints', None) | |
| dataset_channel = cfg['data_cfg'].get('dataset_channel', None) | |
| datasets = [] | |
| num_dset = len(ann_files) | |
| for i in range(num_dset): | |
| cfg_copy = copy.deepcopy(cfg) | |
| cfg_copy['ann_file'] = ann_files[i] | |
| if isinstance(types, (list, tuple)): | |
| cfg_copy['type'] = types[i] | |
| if isinstance(img_prefixes, (list, tuple)): | |
| cfg_copy['img_prefix'] = img_prefixes[i] | |
| if isinstance(dataset_infos, (list, tuple)): | |
| cfg_copy['dataset_info'] = dataset_infos[i] | |
| if isinstance(num_joints, (list, tuple)): | |
| cfg_copy['data_cfg']['num_joints'] = num_joints[i] | |
| if is_seq_of(dataset_channel, list): | |
| cfg_copy['data_cfg']['dataset_channel'] = dataset_channel[i] | |
| datasets.append(build_dataset(cfg_copy, default_args)) | |
| return ConcatDataset(datasets) | |
| def build_dataset(cfg, default_args=None): | |
| """Build a dataset from config dict. | |
| Args: | |
| cfg (dict): Config dict. It should at least contain the key "type". | |
| default_args (dict, optional): Default initialization arguments. | |
| Default: None. | |
| Returns: | |
| Dataset: The constructed dataset. | |
| """ | |
| if isinstance(cfg, (list, tuple)): | |
| dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) | |
| elif cfg['type'] == 'ConcatDataset': | |
| dataset = ConcatDataset( | |
| [build_dataset(c, default_args) for c in cfg['datasets']]) | |
| elif cfg['type'] == 'RepeatDataset': | |
| dataset = RepeatDataset( | |
| build_dataset(cfg['dataset'], default_args), cfg['times']) | |
| elif isinstance(cfg.get('ann_file'), (list, tuple)): | |
| dataset = _concat_dataset(cfg, default_args) | |
| else: | |
| dataset = build_from_cfg(cfg, DATASETS, default_args) | |
| return dataset | |
| def worker_init_fn(worker_id, num_workers, rank, seed): | |
| """Init the random seed for various workers.""" | |
| # The seed of each worker equals to | |
| # num_worker * rank + worker_id + user_seed | |
| worker_seed = num_workers * rank + worker_id + seed | |
| np.random.seed(worker_seed) | |
| random.seed(worker_seed) | |
| torch.manual_seed(worker_seed) | |