Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import itertools | |
| import math | |
| from typing import Iterator, List, Optional, Sized, Union | |
| import torch | |
| from mmengine.dist import get_dist_info, sync_random_seed | |
| from torch.utils.data import Sampler | |
| from mmpose.datasets import CombinedDataset | |
| from mmpose.registry import DATA_SAMPLERS | |
| class MultiSourceSampler(Sampler): | |
| """Multi-Source Sampler. According to the sampling ratio, sample data from | |
| different datasets to form batches. | |
| Args: | |
| dataset (Sized): The dataset | |
| batch_size (int): Size of mini-batch | |
| source_ratio (list[int | float]): The sampling ratio of different | |
| source datasets in a mini-batch | |
| shuffle (bool): Whether shuffle the dataset or not. Defaults to | |
| ``True`` | |
| round_up (bool): Whether to add extra samples to make the number of | |
| samples evenly divisible by the world size. Defaults to True. | |
| seed (int, optional): Random seed. If ``None``, set a random seed. | |
| Defaults to ``None`` | |
| """ | |
| def __init__(self, | |
| dataset: Sized, | |
| batch_size: int, | |
| source_ratio: List[Union[int, float]], | |
| shuffle: bool = True, | |
| round_up: bool = True, | |
| seed: Optional[int] = None) -> None: | |
| assert isinstance(dataset, CombinedDataset),\ | |
| f'The dataset must be CombinedDataset, but get {dataset}' | |
| assert isinstance(batch_size, int) and batch_size > 0, \ | |
| 'batch_size must be a positive integer value, ' \ | |
| f'but got batch_size={batch_size}' | |
| assert isinstance(source_ratio, list), \ | |
| f'source_ratio must be a list, but got source_ratio={source_ratio}' | |
| assert len(source_ratio) == len(dataset._lens), \ | |
| 'The length of source_ratio must be equal to ' \ | |
| f'the number of datasets, but got source_ratio={source_ratio}' | |
| rank, world_size = get_dist_info() | |
| self.rank = rank | |
| self.world_size = world_size | |
| self.dataset = dataset | |
| self.cumulative_sizes = [0] + list(itertools.accumulate(dataset._lens)) | |
| self.batch_size = batch_size | |
| self.source_ratio = source_ratio | |
| self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / world_size)) | |
| self.num_per_source = [ | |
| int(batch_size * sr / sum(source_ratio)) for sr in source_ratio | |
| ] | |
| self.num_per_source[0] = batch_size - sum(self.num_per_source[1:]) | |
| assert sum(self.num_per_source) == batch_size, \ | |
| 'The sum of num_per_source must be equal to ' \ | |
| f'batch_size, but get {self.num_per_source}' | |
| self.seed = sync_random_seed() if seed is None else seed | |
| self.shuffle = shuffle | |
| self.round_up = round_up | |
| self.source2inds = { | |
| source: self._indices_of_rank(len(ds)) | |
| for source, ds in enumerate(dataset.datasets) | |
| } | |
| def _infinite_indices(self, sample_size: int) -> Iterator[int]: | |
| """Infinitely yield a sequence of indices.""" | |
| g = torch.Generator() | |
| g.manual_seed(self.seed) | |
| while True: | |
| if self.shuffle: | |
| yield from torch.randperm(sample_size, generator=g).tolist() | |
| else: | |
| yield from torch.arange(sample_size).tolist() | |
| def _indices_of_rank(self, sample_size: int) -> Iterator[int]: | |
| """Slice the infinite indices by rank.""" | |
| yield from itertools.islice( | |
| self._infinite_indices(sample_size), self.rank, None, | |
| self.world_size) | |
| def __iter__(self) -> Iterator[int]: | |
| batch_buffer = [] | |
| num_iters = self.num_samples // self.batch_size | |
| if self.round_up and self.num_samples > num_iters * self.batch_size: | |
| num_iters += 1 | |
| for i in range(num_iters): | |
| for source, num in enumerate(self.num_per_source): | |
| batch_buffer_per_source = [] | |
| for idx in self.source2inds[source]: | |
| idx += self.cumulative_sizes[source] | |
| batch_buffer_per_source.append(idx) | |
| if len(batch_buffer_per_source) == num: | |
| batch_buffer += batch_buffer_per_source | |
| break | |
| return iter(batch_buffer) | |
| def __len__(self) -> int: | |
| return self.num_samples | |
| def set_epoch(self, epoch: int) -> None: | |
| """Compatible in `epoch-based runner.""" | |
| pass | |