Spaces:
Build error
Build error
Upload app.py (#3)
Browse files- Upload app.py (1b15cff9f9517ef9ca83d0aeb7f34dc1b9145fe5)
Co-authored-by: hardik kandpal <hardik8588@users.noreply.huggingface.co>
app.py
ADDED
|
@@ -0,0 +1,1526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import snapshot_download
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import io
|
| 5 |
+
import time
|
| 6 |
+
import uuid
|
| 7 |
+
import tempfile
|
| 8 |
+
import numpy as np
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import pdfplumber
|
| 11 |
+
import spacy
|
| 12 |
+
import torch
|
| 13 |
+
import sqlite3
|
| 14 |
+
import uvicorn
|
| 15 |
+
import moviepy.editor as mp
|
| 16 |
+
from threading import Thread
|
| 17 |
+
from datetime import datetime, timedelta
|
| 18 |
+
from typing import List, Dict, Optional
|
| 19 |
+
from fastapi import FastAPI, File, UploadFile, Form, Depends, HTTPException, status, Header
|
| 20 |
+
from fastapi.responses import FileResponse, HTMLResponse, JSONResponse
|
| 21 |
+
from fastapi.staticfiles import StaticFiles
|
| 22 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 23 |
+
import logging
|
| 24 |
+
from pydantic import BaseModel
|
| 25 |
+
from transformers import (
|
| 26 |
+
AutoTokenizer,
|
| 27 |
+
AutoModelForQuestionAnswering,
|
| 28 |
+
pipeline,
|
| 29 |
+
TrainingArguments,
|
| 30 |
+
Trainer
|
| 31 |
+
)
|
| 32 |
+
from sentence_transformers import SentenceTransformer
|
| 33 |
+
from passlib.context import CryptContext
|
| 34 |
+
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
|
| 35 |
+
import jwt
|
| 36 |
+
from dotenv import load_dotenv
|
| 37 |
+
# Import get_db_connection from auth
|
| 38 |
+
from auth import (
|
| 39 |
+
User, UserCreate, Token, get_current_active_user, authenticate_user,
|
| 40 |
+
create_access_token, hash_password, register_user, check_subscription_access,
|
| 41 |
+
SUBSCRIPTION_TIERS, JWT_EXPIRATION_DELTA, get_db_connection, update_auth_db_schema
|
| 42 |
+
)
|
| 43 |
+
# Add this import near the top with your other imports
|
| 44 |
+
from paypal_integration import (
|
| 45 |
+
create_user_subscription, verify_subscription_payment,
|
| 46 |
+
update_user_subscription, handle_subscription_webhook, initialize_database
|
| 47 |
+
)
|
| 48 |
+
from fastapi import Request # Add this if not already imported
|
| 49 |
+
|
| 50 |
+
logging.basicConfig(
|
| 51 |
+
level=logging.INFO,
|
| 52 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 53 |
+
)
|
| 54 |
+
logger = logging.getLogger("app")
|
| 55 |
+
|
| 56 |
+
# Initialize the database
|
| 57 |
+
# Initialize FastAPI app
|
| 58 |
+
app = FastAPI(
|
| 59 |
+
title="Legal Document Analysis API",
|
| 60 |
+
description="API for analyzing legal documents, videos, and audio",
|
| 61 |
+
version="1.0.0"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Set up CORS middleware
|
| 65 |
+
app.add_middleware(
|
| 66 |
+
CORSMiddleware,
|
| 67 |
+
allow_origins=["https://testing-78wtxfqt0-hardikkandpals-projects.vercel.app", "http://localhost:3000"], # Frontend URL
|
| 68 |
+
allow_credentials=True,
|
| 69 |
+
allow_methods=["*"],
|
| 70 |
+
allow_headers=["*"],
|
| 71 |
+
)
|
| 72 |
+
initialize_database()
|
| 73 |
+
try:
|
| 74 |
+
update_auth_db_schema()
|
| 75 |
+
logger.info("Database schema updated successfully")
|
| 76 |
+
except Exception as e:
|
| 77 |
+
logger.error(f"Database schema update error: {e}")
|
| 78 |
+
|
| 79 |
+
# Create static directory for file storage
|
| 80 |
+
os.makedirs("static", exist_ok=True)
|
| 81 |
+
os.makedirs("uploads", exist_ok=True)
|
| 82 |
+
os.makedirs("temp", exist_ok=True)
|
| 83 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 84 |
+
|
| 85 |
+
# Set device for model inference
|
| 86 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 87 |
+
print(f"Using device: {device}")
|
| 88 |
+
|
| 89 |
+
# Initialize chat history
|
| 90 |
+
chat_history = []
|
| 91 |
+
|
| 92 |
+
# Document context storage
|
| 93 |
+
document_contexts = {}
|
| 94 |
+
|
| 95 |
+
def store_document_context(task_id, text):
|
| 96 |
+
"""Store document text for later retrieval."""
|
| 97 |
+
document_contexts[task_id] = text
|
| 98 |
+
|
| 99 |
+
def load_document_context(task_id):
|
| 100 |
+
"""Load document text for a given task ID."""
|
| 101 |
+
return document_contexts.get(task_id, "")
|
| 102 |
+
|
| 103 |
+
def get_db_connection():
|
| 104 |
+
"""Get a connection to the SQLite database."""
|
| 105 |
+
db_path = os.path.join(os.path.dirname(__file__), "legal_analysis.db")
|
| 106 |
+
conn = sqlite3.connect(db_path)
|
| 107 |
+
conn.row_factory = sqlite3.Row
|
| 108 |
+
return conn
|
| 109 |
+
|
| 110 |
+
load_dotenv()
|
| 111 |
+
DB_PATH = os.getenv("DB_PATH", os.path.join(os.path.dirname(__file__), "data/user_data.db"))
|
| 112 |
+
os.makedirs(os.path.join(os.path.dirname(__file__), "data"), exist_ok=True)
|
| 113 |
+
|
| 114 |
+
def fine_tune_qa_model():
|
| 115 |
+
"""Fine-tunes a QA model on the CUAD dataset."""
|
| 116 |
+
print("Loading base model for fine-tuning...")
|
| 117 |
+
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
| 118 |
+
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
| 119 |
+
|
| 120 |
+
# Load and preprocess CUAD dataset
|
| 121 |
+
print("Loading CUAD dataset...")
|
| 122 |
+
from datasets import load_dataset
|
| 123 |
+
|
| 124 |
+
try:
|
| 125 |
+
dataset = load_dataset("cuad")
|
| 126 |
+
except Exception as e:
|
| 127 |
+
print(f"Error loading CUAD dataset: {str(e)}")
|
| 128 |
+
print("Downloading CUAD dataset from alternative source...")
|
| 129 |
+
# Implement alternative dataset loading here
|
| 130 |
+
return tokenizer, model
|
| 131 |
+
|
| 132 |
+
print(f"Dataset loaded with {len(dataset['train'])} training examples")
|
| 133 |
+
|
| 134 |
+
# Preprocess the dataset
|
| 135 |
+
def preprocess_function(examples):
|
| 136 |
+
questions = [q.strip() for q in examples["question"]]
|
| 137 |
+
contexts = [c.strip() for c in examples["context"]]
|
| 138 |
+
|
| 139 |
+
inputs = tokenizer(
|
| 140 |
+
questions,
|
| 141 |
+
contexts,
|
| 142 |
+
max_length=384,
|
| 143 |
+
truncation="only_second",
|
| 144 |
+
stride=128,
|
| 145 |
+
return_overflowing_tokens=True,
|
| 146 |
+
return_offsets_mapping=True,
|
| 147 |
+
padding="max_length",
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
offset_mapping = inputs.pop("offset_mapping")
|
| 151 |
+
sample_map = inputs.pop("overflow_to_sample_mapping")
|
| 152 |
+
|
| 153 |
+
answers = examples["answers"]
|
| 154 |
+
start_positions = []
|
| 155 |
+
end_positions = []
|
| 156 |
+
|
| 157 |
+
for i, offset in enumerate(offset_mapping):
|
| 158 |
+
sample_idx = sample_map[i]
|
| 159 |
+
answer = answers[sample_idx]
|
| 160 |
+
|
| 161 |
+
start_char = answer["answer_start"][0] if len(answer["answer_start"]) > 0 else 0
|
| 162 |
+
end_char = start_char + len(answer["text"][0]) if len(answer["text"]) > 0 else 0
|
| 163 |
+
|
| 164 |
+
sequence_ids = inputs.sequence_ids(i)
|
| 165 |
+
|
| 166 |
+
# Find the start and end of the context
|
| 167 |
+
idx = 0
|
| 168 |
+
while sequence_ids[idx] != 1:
|
| 169 |
+
idx += 1
|
| 170 |
+
context_start = idx
|
| 171 |
+
|
| 172 |
+
while idx < len(sequence_ids) and sequence_ids[idx] == 1:
|
| 173 |
+
idx += 1
|
| 174 |
+
context_end = idx - 1
|
| 175 |
+
|
| 176 |
+
# If the answer is not fully inside the context, label is (0, 0)
|
| 177 |
+
if offset[context_start][0] > start_char or offset[context_end][1] < end_char:
|
| 178 |
+
start_positions.append(0)
|
| 179 |
+
end_positions.append(0)
|
| 180 |
+
else:
|
| 181 |
+
# Otherwise it's the start and end token positions
|
| 182 |
+
idx = context_start
|
| 183 |
+
while idx <= context_end and offset[idx][0] <= start_char:
|
| 184 |
+
idx += 1
|
| 185 |
+
start_positions.append(idx - 1)
|
| 186 |
+
|
| 187 |
+
idx = context_end
|
| 188 |
+
while idx >= context_start and offset[idx][1] >= end_char:
|
| 189 |
+
idx -= 1
|
| 190 |
+
end_positions.append(idx + 1)
|
| 191 |
+
|
| 192 |
+
inputs["start_positions"] = start_positions
|
| 193 |
+
inputs["end_positions"] = end_positions
|
| 194 |
+
return inputs
|
| 195 |
+
|
| 196 |
+
print("Preprocessing dataset...")
|
| 197 |
+
processed_dataset = dataset.map(
|
| 198 |
+
preprocess_function,
|
| 199 |
+
batched=True,
|
| 200 |
+
remove_columns=dataset["train"].column_names,
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
print("Splitting dataset...")
|
| 204 |
+
train_dataset = processed_dataset["train"]
|
| 205 |
+
val_dataset = processed_dataset["validation"]
|
| 206 |
+
|
| 207 |
+
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
| 208 |
+
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
|
| 209 |
+
|
| 210 |
+
training_args = TrainingArguments(
|
| 211 |
+
output_dir="./fine_tuned_legal_qa",
|
| 212 |
+
evaluation_strategy="steps",
|
| 213 |
+
eval_steps=100,
|
| 214 |
+
learning_rate=2e-5,
|
| 215 |
+
per_device_train_batch_size=16,
|
| 216 |
+
per_device_eval_batch_size=16,
|
| 217 |
+
num_train_epochs=1,
|
| 218 |
+
weight_decay=0.01,
|
| 219 |
+
logging_steps=50,
|
| 220 |
+
save_steps=100,
|
| 221 |
+
load_best_model_at_end=True,
|
| 222 |
+
report_to=[]
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
print("✅ Starting fine tuning on CUAD QA dataset...")
|
| 226 |
+
trainer = Trainer(
|
| 227 |
+
model=model,
|
| 228 |
+
args=training_args,
|
| 229 |
+
train_dataset=train_dataset,
|
| 230 |
+
eval_dataset=val_dataset,
|
| 231 |
+
tokenizer=tokenizer,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
trainer.train()
|
| 235 |
+
print("✅ Fine tuning completed. Saving model...")
|
| 236 |
+
|
| 237 |
+
model.save_pretrained("./fine_tuned_legal_qa")
|
| 238 |
+
tokenizer.save_pretrained("./fine_tuned_legal_qa")
|
| 239 |
+
|
| 240 |
+
return tokenizer, model
|
| 241 |
+
|
| 242 |
+
#############################
|
| 243 |
+
# Load NLP Models #
|
| 244 |
+
#############################
|
| 245 |
+
|
| 246 |
+
# Initialize model variables
|
| 247 |
+
nlp = None
|
| 248 |
+
summarizer = None
|
| 249 |
+
embedding_model = None
|
| 250 |
+
ner_model = None
|
| 251 |
+
speech_to_text = None
|
| 252 |
+
cuad_model = None
|
| 253 |
+
cuad_tokenizer = None
|
| 254 |
+
qa_model = None
|
| 255 |
+
|
| 256 |
+
# Add model caching functionality
|
| 257 |
+
import pickle
|
| 258 |
+
import os.path
|
| 259 |
+
|
| 260 |
+
#MODELS_CACHE_DIR = "c:\\Users\\hardi\\OneDrive\\Desktop\\New folder (7)\\doc-vid-analyze-main\\models_cache"
|
| 261 |
+
MODELS_CACHE_DIR = os.getenv("MODELS_CACHE_DIR", "models_cache")
|
| 262 |
+
os.makedirs(MODELS_CACHE_DIR, exist_ok=True)
|
| 263 |
+
|
| 264 |
+
def download_model_from_hub(model_id, subfolder=None):
|
| 265 |
+
"""Download a model from Hugging Face Hub"""
|
| 266 |
+
try:
|
| 267 |
+
local_dir = snapshot_download(
|
| 268 |
+
repo_id=model_id,
|
| 269 |
+
subfolder=subfolder,
|
| 270 |
+
local_dir=os.path.join(MODELS_CACHE_DIR, model_id.replace("/", "_"))
|
| 271 |
+
)
|
| 272 |
+
print(f"✅ Downloaded model {model_id} to {local_dir}")
|
| 273 |
+
return local_dir
|
| 274 |
+
except Exception as e:
|
| 275 |
+
print(f"⚠️ Error downloading model {model_id}: {str(e)}")
|
| 276 |
+
return None
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def save_model_to_cache(model, model_name):
|
| 280 |
+
"""Save a model to the cache directory"""
|
| 281 |
+
try:
|
| 282 |
+
cache_path = os.path.join(MODELS_CACHE_DIR, f"{model_name}.pkl")
|
| 283 |
+
with open(cache_path, 'wb') as f:
|
| 284 |
+
pickle.dump(model, f)
|
| 285 |
+
print(f"✅ Saved {model_name} to cache")
|
| 286 |
+
return True
|
| 287 |
+
except Exception as e:
|
| 288 |
+
print(f"⚠️ Failed to save {model_name} to cache: {str(e)}")
|
| 289 |
+
return False
|
| 290 |
+
|
| 291 |
+
def load_model_from_cache(model_name):
|
| 292 |
+
"""Load a model from the cache directory"""
|
| 293 |
+
try:
|
| 294 |
+
cache_path = os.path.join(MODELS_CACHE_DIR, f"{model_name}.pkl")
|
| 295 |
+
if os.path.exists(cache_path):
|
| 296 |
+
with open(cache_path, 'rb') as f:
|
| 297 |
+
model = pickle.load(f)
|
| 298 |
+
print(f"✅ Loaded {model_name} from cache")
|
| 299 |
+
return model
|
| 300 |
+
return None
|
| 301 |
+
except Exception as e:
|
| 302 |
+
print(f"⚠️ Failed to load {model_name} from cache: {str(e)}")
|
| 303 |
+
return None
|
| 304 |
+
|
| 305 |
+
# Add a flag to control model loading
|
| 306 |
+
LOAD_MODELS = os.getenv("LOAD_MODELS", "True").lower() in ("true", "1", "t")
|
| 307 |
+
|
| 308 |
+
try:
|
| 309 |
+
if LOAD_MODELS:
|
| 310 |
+
# Try to load SpaCy from cache first
|
| 311 |
+
nlp = load_model_from_cache("spacy_model")
|
| 312 |
+
if nlp is None:
|
| 313 |
+
try:
|
| 314 |
+
nlp = spacy.load("en_core_web_sm")
|
| 315 |
+
save_model_to_cache(nlp, "spacy_model")
|
| 316 |
+
except:
|
| 317 |
+
print("⚠️ SpaCy model not found, downloading...")
|
| 318 |
+
spacy.cli.download("en_core_web_sm")
|
| 319 |
+
nlp = spacy.load("en_core_web_sm")
|
| 320 |
+
save_model_to_cache(nlp, "spacy_model")
|
| 321 |
+
|
| 322 |
+
print("✅ Loading NLP models...")
|
| 323 |
+
|
| 324 |
+
# Load the summarizer with caching
|
| 325 |
+
print("Loading summarizer model...")
|
| 326 |
+
summarizer = load_model_from_cache("summarizer_model")
|
| 327 |
+
if summarizer is None:
|
| 328 |
+
try:
|
| 329 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn",
|
| 330 |
+
device=0 if torch.cuda.is_available() else -1)
|
| 331 |
+
save_model_to_cache(summarizer, "summarizer_model")
|
| 332 |
+
print("✅ Summarizer loaded successfully")
|
| 333 |
+
except Exception as e:
|
| 334 |
+
print(f"⚠️ Error loading summarizer: {str(e)}")
|
| 335 |
+
try:
|
| 336 |
+
print("Trying alternative summarizer model...")
|
| 337 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6",
|
| 338 |
+
device=0 if torch.cuda.is_available() else -1)
|
| 339 |
+
save_model_to_cache(summarizer, "summarizer_model")
|
| 340 |
+
print("✅ Alternative summarizer loaded successfully")
|
| 341 |
+
except Exception as e2:
|
| 342 |
+
print(f"⚠️ Error loading alternative summarizer: {str(e2)}")
|
| 343 |
+
summarizer = None
|
| 344 |
+
|
| 345 |
+
# Load the embedding model with caching
|
| 346 |
+
print("Loading embedding model...")
|
| 347 |
+
embedding_model = load_model_from_cache("embedding_model")
|
| 348 |
+
if embedding_model is None:
|
| 349 |
+
try:
|
| 350 |
+
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
|
| 351 |
+
save_model_to_cache(embedding_model, "embedding_model")
|
| 352 |
+
print("✅ Embedding model loaded successfully")
|
| 353 |
+
except Exception as e:
|
| 354 |
+
print(f"⚠️ Error loading embedding model: {str(e)}")
|
| 355 |
+
embedding_model = None
|
| 356 |
+
|
| 357 |
+
# Load the NER model with caching
|
| 358 |
+
print("Loading NER model...")
|
| 359 |
+
ner_model = load_model_from_cache("ner_model")
|
| 360 |
+
if ner_model is None:
|
| 361 |
+
try:
|
| 362 |
+
ner_model = pipeline("ner", model="dslim/bert-base-NER",
|
| 363 |
+
device=0 if torch.cuda.is_available() else -1)
|
| 364 |
+
save_model_to_cache(ner_model, "ner_model")
|
| 365 |
+
print("✅ NER model loaded successfully")
|
| 366 |
+
except Exception as e:
|
| 367 |
+
print(f"⚠️ Error loading NER model: {str(e)}")
|
| 368 |
+
ner_model = None
|
| 369 |
+
|
| 370 |
+
# Speech to text model with caching
|
| 371 |
+
print("Loading speech to text model...")
|
| 372 |
+
speech_to_text = load_model_from_cache("speech_to_text_model")
|
| 373 |
+
if speech_to_text is None:
|
| 374 |
+
try:
|
| 375 |
+
speech_to_text = pipeline("automatic-speech-recognition",
|
| 376 |
+
model="openai/whisper-medium",
|
| 377 |
+
chunk_length_s=30,
|
| 378 |
+
device_map="auto" if torch.cuda.is_available() else "cpu")
|
| 379 |
+
save_model_to_cache(speech_to_text, "speech_to_text_model")
|
| 380 |
+
print("✅ Speech to text model loaded successfully")
|
| 381 |
+
except Exception as e:
|
| 382 |
+
print(f"⚠️ Error loading speech to text model: {str(e)}")
|
| 383 |
+
speech_to_text = None
|
| 384 |
+
|
| 385 |
+
# Load the fine-tuned model with caching
|
| 386 |
+
print("Loading fine-tuned CUAD QA model...")
|
| 387 |
+
cuad_model = load_model_from_cache("cuad_model")
|
| 388 |
+
cuad_tokenizer = load_model_from_cache("cuad_tokenizer")
|
| 389 |
+
|
| 390 |
+
if cuad_model is None or cuad_tokenizer is None:
|
| 391 |
+
try:
|
| 392 |
+
cuad_tokenizer = AutoTokenizer.from_pretrained("hardik8588/fine-tuned-legal-qa")
|
| 393 |
+
from transformers import AutoModelForQuestionAnswering
|
| 394 |
+
cuad_model = AutoModelForQuestionAnswering.from_pretrained("hardik8588/fine-tuned-legal-qa")
|
| 395 |
+
cuad_model.to(device)
|
| 396 |
+
save_model_to_cache(cuad_tokenizer, "cuad_tokenizer")
|
| 397 |
+
save_model_to_cache(cuad_model, "cuad_model")
|
| 398 |
+
print("✅ Successfully loaded fine-tuned model")
|
| 399 |
+
except Exception as e:
|
| 400 |
+
print(f"⚠️ Error loading fine-tuned model: {str(e)}")
|
| 401 |
+
print("⚠️ Falling back to pre-trained model...")
|
| 402 |
+
try:
|
| 403 |
+
cuad_tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
| 404 |
+
from transformers import AutoModelForQuestionAnswering
|
| 405 |
+
cuad_model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
| 406 |
+
cuad_model.to(device)
|
| 407 |
+
save_model_to_cache(cuad_tokenizer, "cuad_tokenizer")
|
| 408 |
+
save_model_to_cache(cuad_model, "cuad_model")
|
| 409 |
+
print("✅ Pre-trained model loaded successfully")
|
| 410 |
+
except Exception as e2:
|
| 411 |
+
print(f"⚠️ Error loading pre-trained model: {str(e2)}")
|
| 412 |
+
cuad_model = None
|
| 413 |
+
cuad_tokenizer = None
|
| 414 |
+
|
| 415 |
+
# Load a general QA model with caching
|
| 416 |
+
print("Loading general QA model...")
|
| 417 |
+
qa_model = load_model_from_cache("qa_model")
|
| 418 |
+
if qa_model is None:
|
| 419 |
+
try:
|
| 420 |
+
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
| 421 |
+
save_model_to_cache(qa_model, "qa_model")
|
| 422 |
+
print("✅ QA model loaded successfully")
|
| 423 |
+
except Exception as e:
|
| 424 |
+
print(f"⚠️ Error loading QA model: {str(e)}")
|
| 425 |
+
qa_model = None
|
| 426 |
+
|
| 427 |
+
print("✅ All models loaded successfully")
|
| 428 |
+
else:
|
| 429 |
+
print("⚠️ Model loading skipped (LOAD_MODELS=False)")
|
| 430 |
+
|
| 431 |
+
except Exception as e:
|
| 432 |
+
print(f"⚠️ Error loading models: {str(e)}")
|
| 433 |
+
# Instead of raising an error, set fallback behavior
|
| 434 |
+
nlp = None
|
| 435 |
+
summarizer = None
|
| 436 |
+
embedding_model = None
|
| 437 |
+
ner_model = None
|
| 438 |
+
speech_to_text = None
|
| 439 |
+
cuad_model = None
|
| 440 |
+
cuad_tokenizer = None
|
| 441 |
+
qa_model = None
|
| 442 |
+
print("⚠️ Running with limited functionality due to model loading errors")
|
| 443 |
+
|
| 444 |
+
def legal_chatbot(user_input, context):
|
| 445 |
+
"""Uses a real NLP model for legal Q&A."""
|
| 446 |
+
global chat_history
|
| 447 |
+
chat_history.append({"role": "user", "content": user_input})
|
| 448 |
+
response = qa_model(question=user_input, context=context)["answer"]
|
| 449 |
+
chat_history.append({"role": "assistant", "content": response})
|
| 450 |
+
return response
|
| 451 |
+
|
| 452 |
+
def extract_text_from_pdf(pdf_file):
|
| 453 |
+
"""Extracts text from a PDF file using pdfplumber."""
|
| 454 |
+
try:
|
| 455 |
+
# Suppress pdfplumber warnings about CropBox
|
| 456 |
+
import logging
|
| 457 |
+
logging.getLogger("pdfminer").setLevel(logging.ERROR)
|
| 458 |
+
|
| 459 |
+
with pdfplumber.open(pdf_file) as pdf:
|
| 460 |
+
print(f"Processing PDF with {len(pdf.pages)} pages")
|
| 461 |
+
text = ""
|
| 462 |
+
for i, page in enumerate(pdf.pages):
|
| 463 |
+
page_text = page.extract_text() or ""
|
| 464 |
+
text += page_text + "\n"
|
| 465 |
+
if (i + 1) % 10 == 0: # Log progress every 10 pages
|
| 466 |
+
print(f"Processed {i + 1} pages...")
|
| 467 |
+
|
| 468 |
+
print(f"✅ PDF text extraction complete: {len(text)} characters extracted")
|
| 469 |
+
return text.strip() if text else None
|
| 470 |
+
except Exception as e:
|
| 471 |
+
print(f"❌ PDF extraction error: {str(e)}")
|
| 472 |
+
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
|
| 473 |
+
|
| 474 |
+
def process_video_to_text(video_file_path):
|
| 475 |
+
"""Extract audio from video and convert to text."""
|
| 476 |
+
try:
|
| 477 |
+
print(f"Processing video file at {video_file_path}")
|
| 478 |
+
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
|
| 479 |
+
video = mp.VideoFileClip(video_file_path)
|
| 480 |
+
video.audio.write_audiofile(temp_audio_path, codec='pcm_s16le')
|
| 481 |
+
print(f"Audio extracted to {temp_audio_path}")
|
| 482 |
+
result = speech_to_text(temp_audio_path)
|
| 483 |
+
transcript = result["text"]
|
| 484 |
+
print(f"Transcription completed: {len(transcript)} characters")
|
| 485 |
+
if os.path.exists(temp_audio_path):
|
| 486 |
+
os.remove(temp_audio_path)
|
| 487 |
+
return transcript
|
| 488 |
+
except Exception as e:
|
| 489 |
+
print(f"Error in video processing: {str(e)}")
|
| 490 |
+
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
|
| 491 |
+
|
| 492 |
+
def process_audio_to_text(audio_file_path):
|
| 493 |
+
"""Process audio file and convert to text."""
|
| 494 |
+
try:
|
| 495 |
+
print(f"Processing audio file at {audio_file_path}")
|
| 496 |
+
result = speech_to_text(audio_file_path)
|
| 497 |
+
transcript = result["text"]
|
| 498 |
+
print(f"Transcription completed: {len(transcript)} characters")
|
| 499 |
+
return transcript
|
| 500 |
+
except Exception as e:
|
| 501 |
+
print(f"Error in audio processing: {str(e)}")
|
| 502 |
+
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
|
| 503 |
+
|
| 504 |
+
def extract_named_entities(text):
|
| 505 |
+
"""Extracts named entities from legal text."""
|
| 506 |
+
max_length = 10000
|
| 507 |
+
entities = []
|
| 508 |
+
for i in range(0, len(text), max_length):
|
| 509 |
+
chunk = text[i:i+max_length]
|
| 510 |
+
doc = nlp(chunk)
|
| 511 |
+
entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
|
| 512 |
+
return entities
|
| 513 |
+
|
| 514 |
+
def analyze_risk(text):
|
| 515 |
+
"""Analyzes legal risk in the document using keyword-based analysis."""
|
| 516 |
+
risk_keywords = {
|
| 517 |
+
"Liability": ["liability", "responsible", "responsibility", "legal obligation"],
|
| 518 |
+
"Termination": ["termination", "breach", "contract end", "default"],
|
| 519 |
+
"Indemnification": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"],
|
| 520 |
+
"Payment Risk": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"],
|
| 521 |
+
"Insurance": ["insurance", "coverage", "policy", "claims"],
|
| 522 |
+
}
|
| 523 |
+
risk_scores = {category: 0 for category in risk_keywords}
|
| 524 |
+
lower_text = text.lower()
|
| 525 |
+
for category, keywords in risk_keywords.items():
|
| 526 |
+
for keyword in keywords:
|
| 527 |
+
risk_scores[category] += lower_text.count(keyword.lower())
|
| 528 |
+
return risk_scores
|
| 529 |
+
|
| 530 |
+
def extract_context_for_risk_terms(text, risk_keywords, window=1):
|
| 531 |
+
"""
|
| 532 |
+
Extracts and summarizes the context around risk terms.
|
| 533 |
+
"""
|
| 534 |
+
doc = nlp(text)
|
| 535 |
+
sentences = list(doc.sents)
|
| 536 |
+
risk_contexts = {category: [] for category in risk_keywords}
|
| 537 |
+
for i, sent in enumerate(sentences):
|
| 538 |
+
sent_text_lower = sent.text.lower()
|
| 539 |
+
for category, details in risk_keywords.items():
|
| 540 |
+
for keyword in details["keywords"]:
|
| 541 |
+
if keyword.lower() in sent_text_lower:
|
| 542 |
+
start_idx = max(0, i - window)
|
| 543 |
+
end_idx = min(len(sentences), i + window + 1)
|
| 544 |
+
context_chunk = " ".join([s.text for s in sentences[start_idx:end_idx]])
|
| 545 |
+
risk_contexts[category].append(context_chunk)
|
| 546 |
+
summarized_contexts = {}
|
| 547 |
+
for category, contexts in risk_contexts.items():
|
| 548 |
+
if contexts:
|
| 549 |
+
combined_context = " ".join(contexts)
|
| 550 |
+
try:
|
| 551 |
+
summary_result = summarizer(combined_context, max_length=100, min_length=30, do_sample=False)
|
| 552 |
+
summary = summary_result[0]['summary_text']
|
| 553 |
+
except Exception as e:
|
| 554 |
+
summary = "Context summarization failed."
|
| 555 |
+
summarized_contexts[category] = summary
|
| 556 |
+
else:
|
| 557 |
+
summarized_contexts[category] = "No contextual details found."
|
| 558 |
+
return summarized_contexts
|
| 559 |
+
|
| 560 |
+
def get_detailed_risk_info(text):
|
| 561 |
+
"""
|
| 562 |
+
Returns detailed risk information by merging risk scores with descriptive details
|
| 563 |
+
and contextual summaries from the document.
|
| 564 |
+
"""
|
| 565 |
+
risk_details = {
|
| 566 |
+
"Liability": {
|
| 567 |
+
"description": "Liability refers to the legal responsibility for losses or damages.",
|
| 568 |
+
"common_concerns": "Broad liability clauses may expose parties to unforeseen risks.",
|
| 569 |
+
"recommendations": "Review and negotiate clear limits on liability.",
|
| 570 |
+
"example": "E.g., 'The party shall be liable for direct damages due to negligence.'"
|
| 571 |
+
},
|
| 572 |
+
"Termination": {
|
| 573 |
+
"description": "Termination involves conditions under which a contract can be ended.",
|
| 574 |
+
"common_concerns": "Unilateral termination rights or ambiguous conditions can be risky.",
|
| 575 |
+
"recommendations": "Ensure termination clauses are balanced and include notice periods.",
|
| 576 |
+
"example": "E.g., 'Either party may terminate the agreement with 30 days notice.'"
|
| 577 |
+
},
|
| 578 |
+
"Indemnification": {
|
| 579 |
+
"description": "Indemnification requires one party to compensate for losses incurred by the other.",
|
| 580 |
+
"common_concerns": "Overly broad indemnification can shift significant risk.",
|
| 581 |
+
"recommendations": "Negotiate clear limits and carve-outs where necessary.",
|
| 582 |
+
"example": "E.g., 'The seller shall indemnify the buyer against claims from product defects.'"
|
| 583 |
+
},
|
| 584 |
+
"Payment Risk": {
|
| 585 |
+
"description": "Payment risk pertains to terms regarding fees, schedules, and reimbursements.",
|
| 586 |
+
"common_concerns": "Vague payment terms or hidden charges increase risk.",
|
| 587 |
+
"recommendations": "Clarify payment conditions and include penalties for delays.",
|
| 588 |
+
"example": "E.g., 'Payments must be made within 30 days, with a 2% late fee thereafter.'"
|
| 589 |
+
},
|
| 590 |
+
"Insurance": {
|
| 591 |
+
"description": "Insurance risk covers the adequacy and scope of required coverage.",
|
| 592 |
+
"common_concerns": "Insufficient insurance can leave parties exposed in unexpected events.",
|
| 593 |
+
"recommendations": "Review insurance requirements to ensure they meet the risk profile.",
|
| 594 |
+
"example": "E.g., 'The contractor must maintain liability insurance with at least $1M coverage.'"
|
| 595 |
+
}
|
| 596 |
+
}
|
| 597 |
+
risk_scores = analyze_risk(text)
|
| 598 |
+
risk_keywords_context = {
|
| 599 |
+
"Liability": {"keywords": ["liability", "responsible", "responsibility", "legal obligation"]},
|
| 600 |
+
"Termination": {"keywords": ["termination", "breach", "contract end", "default"]},
|
| 601 |
+
"Indemnification": {"keywords": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"]},
|
| 602 |
+
"Payment Risk": {"keywords": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"]},
|
| 603 |
+
"Insurance": {"keywords": ["insurance", "coverage", "policy", "claims"]}
|
| 604 |
+
}
|
| 605 |
+
risk_contexts = extract_context_for_risk_terms(text, risk_keywords_context, window=1)
|
| 606 |
+
detailed_info = {}
|
| 607 |
+
for risk_term, score in risk_scores.items():
|
| 608 |
+
if score > 0:
|
| 609 |
+
info = risk_details.get(risk_term, {"description": "No details available."})
|
| 610 |
+
detailed_info[risk_term] = {
|
| 611 |
+
"score": score,
|
| 612 |
+
"description": info.get("description", ""),
|
| 613 |
+
"common_concerns": info.get("common_concerns", ""),
|
| 614 |
+
"recommendations": info.get("recommendations", ""),
|
| 615 |
+
"example": info.get("example", ""),
|
| 616 |
+
"context_summary": risk_contexts.get(risk_term, "No context available.")
|
| 617 |
+
}
|
| 618 |
+
return detailed_info
|
| 619 |
+
|
| 620 |
+
def analyze_contract_clauses(text):
|
| 621 |
+
"""Analyzes contract clauses using the fine-tuned CUAD QA model."""
|
| 622 |
+
max_length = 512
|
| 623 |
+
step = 256
|
| 624 |
+
clauses_detected = []
|
| 625 |
+
try:
|
| 626 |
+
clause_types = list(cuad_model.config.id2label.values())
|
| 627 |
+
except Exception as e:
|
| 628 |
+
clause_types = [
|
| 629 |
+
"Obligations of Seller", "Governing Law", "Termination", "Indemnification",
|
| 630 |
+
"Confidentiality", "Insurance", "Non-Compete", "Change of Control",
|
| 631 |
+
"Assignment", "Warranty", "Limitation of Liability", "Arbitration",
|
| 632 |
+
"IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
|
| 633 |
+
]
|
| 634 |
+
chunks = [text[i:i+max_length] for i in range(0, len(text), step) if i+step < len(text)]
|
| 635 |
+
for chunk in chunks:
|
| 636 |
+
inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512).to(device)
|
| 637 |
+
with torch.no_grad():
|
| 638 |
+
outputs = cuad_model(**inputs)
|
| 639 |
+
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
|
| 640 |
+
for idx, confidence in enumerate(predictions):
|
| 641 |
+
if confidence > 0.5 and idx < len(clause_types):
|
| 642 |
+
clauses_detected.append({"type": clause_types[idx], "confidence": float(confidence)})
|
| 643 |
+
aggregated_clauses = {}
|
| 644 |
+
for clause in clauses_detected:
|
| 645 |
+
clause_type = clause["type"]
|
| 646 |
+
if clause_type not in aggregated_clauses or clause["confidence"] > aggregated_clauses[clause_type]["confidence"]:
|
| 647 |
+
aggregated_clauses[clause_type] = clause
|
| 648 |
+
return list(aggregated_clauses.values())
|
| 649 |
+
|
| 650 |
+
def summarize_text(text):
|
| 651 |
+
"""Summarizes legal text using the summarizer model."""
|
| 652 |
+
try:
|
| 653 |
+
if summarizer is None:
|
| 654 |
+
return "Basic analysis (NLP models not available)"
|
| 655 |
+
|
| 656 |
+
# Split text into chunks if it's too long
|
| 657 |
+
max_chunk_size = 1024
|
| 658 |
+
if len(text) > max_chunk_size:
|
| 659 |
+
chunks = [text[i:i+max_chunk_size] for i in range(0, len(text), max_chunk_size)]
|
| 660 |
+
summaries = []
|
| 661 |
+
for chunk in chunks:
|
| 662 |
+
summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)
|
| 663 |
+
summaries.append(summary[0]['summary_text'])
|
| 664 |
+
return " ".join(summaries)
|
| 665 |
+
else:
|
| 666 |
+
summary = summarizer(text, max_length=100, min_length=30, do_sample=False)
|
| 667 |
+
return summary[0]['summary_text']
|
| 668 |
+
except Exception as e:
|
| 669 |
+
print(f"Error in summarization: {str(e)}")
|
| 670 |
+
return "Summarization failed. Please try again later."
|
| 671 |
+
|
| 672 |
+
@app.post("/analyze_legal_document")
|
| 673 |
+
async def analyze_legal_document(
|
| 674 |
+
file: UploadFile = File(...),
|
| 675 |
+
current_user: User = Depends(get_current_active_user)
|
| 676 |
+
):
|
| 677 |
+
"""Analyzes a legal document (PDF) and returns insights based on subscription tier."""
|
| 678 |
+
try:
|
| 679 |
+
# Calculate file size in MB
|
| 680 |
+
file_content = await file.read()
|
| 681 |
+
file_size_mb = len(file_content) / (1024 * 1024)
|
| 682 |
+
|
| 683 |
+
# Check subscription access for document analysis
|
| 684 |
+
check_subscription_access(current_user, "document_analysis", file_size_mb)
|
| 685 |
+
|
| 686 |
+
print(f"Processing file: {file.filename}")
|
| 687 |
+
|
| 688 |
+
# Create a temporary file to store the uploaded PDF
|
| 689 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
|
| 690 |
+
tmp.write(file_content)
|
| 691 |
+
tmp_path = tmp.name
|
| 692 |
+
|
| 693 |
+
# Extract text from PDF
|
| 694 |
+
text = extract_text_from_pdf(tmp_path)
|
| 695 |
+
|
| 696 |
+
# Clean up the temporary file
|
| 697 |
+
os.unlink(tmp_path)
|
| 698 |
+
|
| 699 |
+
if not text:
|
| 700 |
+
raise HTTPException(status_code=400, detail="Could not extract text from PDF")
|
| 701 |
+
|
| 702 |
+
# Generate a task ID
|
| 703 |
+
task_id = str(uuid.uuid4())
|
| 704 |
+
|
| 705 |
+
# Store document context for later retrieval
|
| 706 |
+
store_document_context(task_id, text)
|
| 707 |
+
|
| 708 |
+
# Basic analysis available to all tiers
|
| 709 |
+
summary = summarize_text(text)
|
| 710 |
+
entities = extract_named_entities(text)
|
| 711 |
+
risk_scores = analyze_risk(text)
|
| 712 |
+
|
| 713 |
+
# Prepare response based on subscription tier
|
| 714 |
+
response = {
|
| 715 |
+
"task_id": task_id,
|
| 716 |
+
"summary": summary,
|
| 717 |
+
"entities": entities,
|
| 718 |
+
"risk_assessment": risk_scores,
|
| 719 |
+
"subscription_tier": current_user.subscription_tier
|
| 720 |
+
}
|
| 721 |
+
|
| 722 |
+
# Add premium features if user has access
|
| 723 |
+
if current_user.subscription_tier == "premium_tier":
|
| 724 |
+
# Add detailed risk assessment
|
| 725 |
+
if "detailed_risk_assessment" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]:
|
| 726 |
+
detailed_risk = get_detailed_risk_info(text)
|
| 727 |
+
response["detailed_risk_assessment"] = detailed_risk
|
| 728 |
+
|
| 729 |
+
# Add contract clause analysis
|
| 730 |
+
if "contract_clause_analysis" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]:
|
| 731 |
+
clauses = analyze_contract_clauses(text)
|
| 732 |
+
response["contract_clauses"] = clauses
|
| 733 |
+
|
| 734 |
+
return response
|
| 735 |
+
|
| 736 |
+
except Exception as e:
|
| 737 |
+
print(f"Error analyzing document: {str(e)}")
|
| 738 |
+
raise HTTPException(status_code=500, detail=f"Error analyzing document: {str(e)}")
|
| 739 |
+
|
| 740 |
+
# Add this function to check resource limits based on subscription tier
|
| 741 |
+
def check_resource_limits(user: User, resource_type: str, size_mb: float = None, count: int = 1):
|
| 742 |
+
"""
|
| 743 |
+
Check if the user has exceeded their subscription limits for a specific resource
|
| 744 |
+
|
| 745 |
+
Args:
|
| 746 |
+
user: The user making the request
|
| 747 |
+
resource_type: Type of resource (document, video, audio)
|
| 748 |
+
size_mb: Size of the resource in MB
|
| 749 |
+
count: Number of resources being used (default 1)
|
| 750 |
+
|
| 751 |
+
Returns:
|
| 752 |
+
bool: True if within limits, raises HTTPException otherwise
|
| 753 |
+
"""
|
| 754 |
+
# Get the user's subscription tier limits
|
| 755 |
+
tier = user.subscription_tier
|
| 756 |
+
tier_limits = SUBSCRIPTION_TIERS.get(tier, SUBSCRIPTION_TIERS["free_tier"])["limits"]
|
| 757 |
+
|
| 758 |
+
# Check size limits
|
| 759 |
+
if size_mb is not None:
|
| 760 |
+
if resource_type == "document" and size_mb > tier_limits["document_size_mb"]:
|
| 761 |
+
raise HTTPException(
|
| 762 |
+
status_code=status.HTTP_403_FORBIDDEN,
|
| 763 |
+
detail=f"Document size exceeds the {tier_limits['document_size_mb']}MB limit for your {tier} subscription"
|
| 764 |
+
)
|
| 765 |
+
elif resource_type == "video" and size_mb > tier_limits["video_size_mb"]:
|
| 766 |
+
raise HTTPException(
|
| 767 |
+
status_code=status.HTTP_403_FORBIDDEN,
|
| 768 |
+
detail=f"Video size exceeds the {tier_limits['video_size_mb']}MB limit for your {tier} subscription"
|
| 769 |
+
)
|
| 770 |
+
elif resource_type == "audio" and size_mb > tier_limits["audio_size_mb"]:
|
| 771 |
+
raise HTTPException(
|
| 772 |
+
status_code=status.HTTP_403_FORBIDDEN,
|
| 773 |
+
detail=f"Audio size exceeds the {tier_limits['audio_size_mb']}MB limit for your {tier} subscription"
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
+
# Check monthly document count
|
| 777 |
+
if resource_type == "document":
|
| 778 |
+
# Get current month and year
|
| 779 |
+
now = datetime.now()
|
| 780 |
+
month, year = now.month, now.year
|
| 781 |
+
|
| 782 |
+
# Check usage stats for current month
|
| 783 |
+
conn = get_db_connection()
|
| 784 |
+
cursor = conn.cursor()
|
| 785 |
+
cursor.execute(
|
| 786 |
+
"SELECT analyses_used FROM usage_stats WHERE user_id = ? AND month = ? AND year = ?",
|
| 787 |
+
(user.id, month, year)
|
| 788 |
+
)
|
| 789 |
+
result = cursor.fetchone()
|
| 790 |
+
|
| 791 |
+
current_usage = result[0] if result else 0
|
| 792 |
+
|
| 793 |
+
# Check if adding this usage would exceed the limit
|
| 794 |
+
if current_usage + count > tier_limits["documents_per_month"]:
|
| 795 |
+
conn.close()
|
| 796 |
+
raise HTTPException(
|
| 797 |
+
status_code=status.HTTP_403_FORBIDDEN,
|
| 798 |
+
detail=f"You have reached your monthly limit of {tier_limits['documents_per_month']} document analyses for your {tier} subscription"
|
| 799 |
+
)
|
| 800 |
+
|
| 801 |
+
# Update usage stats
|
| 802 |
+
if result:
|
| 803 |
+
cursor.execute(
|
| 804 |
+
"UPDATE usage_stats SET analyses_used = ? WHERE user_id = ? AND month = ? AND year = ?",
|
| 805 |
+
(current_usage + count, user.id, month, year)
|
| 806 |
+
)
|
| 807 |
+
else:
|
| 808 |
+
usage_id = str(uuid.uuid4())
|
| 809 |
+
cursor.execute(
|
| 810 |
+
"INSERT INTO usage_stats (id, user_id, month, year, analyses_used) VALUES (?, ?, ?, ?, ?)",
|
| 811 |
+
(usage_id, user.id, month, year, count)
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
conn.commit()
|
| 815 |
+
conn.close()
|
| 816 |
+
|
| 817 |
+
# Check if feature is available in the tier
|
| 818 |
+
if resource_type == "video" and tier_limits["video_size_mb"] == 0:
|
| 819 |
+
raise HTTPException(
|
| 820 |
+
status_code=status.HTTP_403_FORBIDDEN,
|
| 821 |
+
detail=f"Video analysis is not available in your {tier} subscription"
|
| 822 |
+
)
|
| 823 |
+
|
| 824 |
+
if resource_type == "audio" and tier_limits["audio_size_mb"] == 0:
|
| 825 |
+
raise HTTPException(
|
| 826 |
+
status_code=status.HTTP_403_FORBIDDEN,
|
| 827 |
+
detail=f"Audio analysis is not available in your {tier} subscription"
|
| 828 |
+
)
|
| 829 |
+
|
| 830 |
+
return True
|
| 831 |
+
|
| 832 |
+
@app.post("/analyze_legal_video")
|
| 833 |
+
async def analyze_legal_video(
|
| 834 |
+
file: UploadFile = File(...),
|
| 835 |
+
current_user: User = Depends(get_current_active_user)
|
| 836 |
+
):
|
| 837 |
+
"""Analyzes legal video by transcribing and analyzing the transcript."""
|
| 838 |
+
try:
|
| 839 |
+
# Calculate file size in MB
|
| 840 |
+
file_content = await file.read()
|
| 841 |
+
file_size_mb = len(file_content) / (1024 * 1024)
|
| 842 |
+
|
| 843 |
+
# Check subscription access for video analysis
|
| 844 |
+
check_subscription_access(current_user, "video_analysis", file_size_mb)
|
| 845 |
+
|
| 846 |
+
print(f"Processing video file: {file.filename}")
|
| 847 |
+
|
| 848 |
+
# Create a temporary file to store the uploaded video
|
| 849 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp:
|
| 850 |
+
tmp.write(file_content)
|
| 851 |
+
tmp_path = tmp.name
|
| 852 |
+
|
| 853 |
+
# Process video to extract transcript
|
| 854 |
+
transcript = process_video_to_text(tmp_path)
|
| 855 |
+
|
| 856 |
+
# Clean up the temporary file
|
| 857 |
+
os.unlink(tmp_path)
|
| 858 |
+
|
| 859 |
+
if not transcript:
|
| 860 |
+
raise HTTPException(status_code=400, detail="Could not extract transcript from video")
|
| 861 |
+
|
| 862 |
+
# Generate a task ID
|
| 863 |
+
task_id = str(uuid.uuid4())
|
| 864 |
+
|
| 865 |
+
# Store document context for later retrieval
|
| 866 |
+
store_document_context(task_id, transcript)
|
| 867 |
+
|
| 868 |
+
# Basic analysis
|
| 869 |
+
summary = summarize_text(transcript)
|
| 870 |
+
entities = extract_named_entities(transcript)
|
| 871 |
+
risk_scores = analyze_risk(transcript)
|
| 872 |
+
|
| 873 |
+
# Prepare response
|
| 874 |
+
response = {
|
| 875 |
+
"task_id": task_id,
|
| 876 |
+
"transcript": transcript,
|
| 877 |
+
"summary": summary,
|
| 878 |
+
"entities": entities,
|
| 879 |
+
"risk_assessment": risk_scores,
|
| 880 |
+
"subscription_tier": current_user.subscription_tier
|
| 881 |
+
}
|
| 882 |
+
|
| 883 |
+
# Add premium features if user has access
|
| 884 |
+
if current_user.subscription_tier == "premium_tier":
|
| 885 |
+
# Add detailed risk assessment
|
| 886 |
+
if "detailed_risk_assessment" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]:
|
| 887 |
+
detailed_risk = get_detailed_risk_info(transcript)
|
| 888 |
+
response["detailed_risk_assessment"] = detailed_risk
|
| 889 |
+
|
| 890 |
+
return response
|
| 891 |
+
|
| 892 |
+
except Exception as e:
|
| 893 |
+
print(f"Error analyzing video: {str(e)}")
|
| 894 |
+
raise HTTPException(status_code=500, detail=f"Error analyzing video: {str(e)}")
|
| 895 |
+
|
| 896 |
+
|
| 897 |
+
@app.post("/legal_chatbot/{task_id}")
|
| 898 |
+
async def chat_with_document(
|
| 899 |
+
task_id: str,
|
| 900 |
+
question: str = Form(...),
|
| 901 |
+
current_user: User = Depends(get_current_active_user)
|
| 902 |
+
):
|
| 903 |
+
"""Chat with a document using the legal chatbot."""
|
| 904 |
+
try:
|
| 905 |
+
# Check if user has access to chatbot feature
|
| 906 |
+
if "chatbot" not in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]:
|
| 907 |
+
raise HTTPException(
|
| 908 |
+
status_code=403,
|
| 909 |
+
detail=f"The chatbot feature is not available in your {current_user.subscription_tier} subscription. Please upgrade to access this feature."
|
| 910 |
+
)
|
| 911 |
+
|
| 912 |
+
# Check if document context exists
|
| 913 |
+
context = load_document_context(task_id)
|
| 914 |
+
if not context:
|
| 915 |
+
raise HTTPException(status_code=404, detail="Document context not found. Please analyze a document first.")
|
| 916 |
+
|
| 917 |
+
# Use the chatbot to answer the question
|
| 918 |
+
answer = legal_chatbot(question, context)
|
| 919 |
+
|
| 920 |
+
return {"answer": answer, "chat_history": chat_history}
|
| 921 |
+
|
| 922 |
+
except Exception as e:
|
| 923 |
+
print(f"Error in chatbot: {str(e)}")
|
| 924 |
+
raise HTTPException(status_code=500, detail=f"Error in chatbot: {str(e)}")
|
| 925 |
+
|
| 926 |
+
@app.get("/")
|
| 927 |
+
async def root():
|
| 928 |
+
"""Root endpoint that returns a welcome message."""
|
| 929 |
+
return HTMLResponse(content="""
|
| 930 |
+
<html>
|
| 931 |
+
<head>
|
| 932 |
+
<title>Legal Document Analysis API</title>
|
| 933 |
+
<style>
|
| 934 |
+
body {
|
| 935 |
+
font-family: Arial, sans-serif;
|
| 936 |
+
max-width: 800px;
|
| 937 |
+
margin: 0 auto;
|
| 938 |
+
padding: 20px;
|
| 939 |
+
}
|
| 940 |
+
h1 {
|
| 941 |
+
color: #2c3e50;
|
| 942 |
+
}
|
| 943 |
+
.endpoint {
|
| 944 |
+
background-color: #f8f9fa;
|
| 945 |
+
padding: 15px;
|
| 946 |
+
margin-bottom: 10px;
|
| 947 |
+
border-radius: 5px;
|
| 948 |
+
}
|
| 949 |
+
.method {
|
| 950 |
+
font-weight: bold;
|
| 951 |
+
color: #e74c3c;
|
| 952 |
+
}
|
| 953 |
+
</style>
|
| 954 |
+
</head>
|
| 955 |
+
<body>
|
| 956 |
+
<h1>Legal Document Analysis API</h1>
|
| 957 |
+
<p>Welcome to the Legal Document Analysis API. This API provides tools for analyzing legal documents, videos, and audio.</p>
|
| 958 |
+
<h2>Available Endpoints:</h2>
|
| 959 |
+
<div class="endpoint">
|
| 960 |
+
<p><span class="method">POST</span> /analyze_legal_document - Analyze a legal document (PDF)</p>
|
| 961 |
+
</div>
|
| 962 |
+
<div class="endpoint">
|
| 963 |
+
<p><span class="method">POST</span> /analyze_legal_video - Analyze a legal video</p>
|
| 964 |
+
</div>
|
| 965 |
+
<div class="endpoint">
|
| 966 |
+
<p><span class="method">POST</span> /analyze_legal_audio - Analyze legal audio</p>
|
| 967 |
+
</div>
|
| 968 |
+
<div class="endpoint">
|
| 969 |
+
<p><span class="method">POST</span> /legal_chatbot/{task_id} - Chat with a document</p>
|
| 970 |
+
</div>
|
| 971 |
+
<div class="endpoint">
|
| 972 |
+
<p><span class="method">POST</span> /register - Register a new user</p>
|
| 973 |
+
</div>
|
| 974 |
+
<div class="endpoint">
|
| 975 |
+
<p><span class="method">POST</span> /token - Login to get an access token</p>
|
| 976 |
+
</div>
|
| 977 |
+
<div class="endpoint">
|
| 978 |
+
<p><span class="method">GET</span> /users/me - Get current user information</p>
|
| 979 |
+
</div>
|
| 980 |
+
<div class="endpoint">
|
| 981 |
+
<p><span class="method">POST</span> /subscribe/{tier} - Subscribe to a plan</p>
|
| 982 |
+
</div>
|
| 983 |
+
<p>For more details, visit the <a href="/docs">API documentation</a>.</p>
|
| 984 |
+
</body>
|
| 985 |
+
</html>
|
| 986 |
+
""")
|
| 987 |
+
|
| 988 |
+
@app.post("/register", response_model=Token)
|
| 989 |
+
async def register_new_user(user_data: UserCreate):
|
| 990 |
+
"""Register a new user with a free subscription"""
|
| 991 |
+
try:
|
| 992 |
+
success, result = register_user(user_data.email, user_data.password)
|
| 993 |
+
|
| 994 |
+
if not success:
|
| 995 |
+
raise HTTPException(status_code=400, detail=result)
|
| 996 |
+
|
| 997 |
+
return {"access_token": result["access_token"], "token_type": "bearer"}
|
| 998 |
+
|
| 999 |
+
except HTTPException:
|
| 1000 |
+
# Re-raise HTTP exceptions
|
| 1001 |
+
raise
|
| 1002 |
+
except Exception as e:
|
| 1003 |
+
print(f"Registration error: {str(e)}")
|
| 1004 |
+
raise HTTPException(status_code=500, detail=f"Registration failed: {str(e)}")
|
| 1005 |
+
|
| 1006 |
+
@app.post("/token", response_model=Token)
|
| 1007 |
+
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends()):
|
| 1008 |
+
"""Endpoint for OAuth2 token generation"""
|
| 1009 |
+
try:
|
| 1010 |
+
# Add debug logging
|
| 1011 |
+
logger.info(f"Token request for username: {form_data.username}")
|
| 1012 |
+
|
| 1013 |
+
user = authenticate_user(form_data.username, form_data.password)
|
| 1014 |
+
if not user:
|
| 1015 |
+
logger.warning(f"Authentication failed for: {form_data.username}")
|
| 1016 |
+
raise HTTPException(
|
| 1017 |
+
status_code=status.HTTP_401_UNAUTHORIZED,
|
| 1018 |
+
detail="Incorrect username or password",
|
| 1019 |
+
headers={"WWW-Authenticate": "Bearer"},
|
| 1020 |
+
)
|
| 1021 |
+
|
| 1022 |
+
access_token = create_access_token(user.id)
|
| 1023 |
+
if not access_token:
|
| 1024 |
+
logger.error(f"Failed to create access token for user: {user.id}")
|
| 1025 |
+
raise HTTPException(
|
| 1026 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 1027 |
+
detail="Could not create access token",
|
| 1028 |
+
)
|
| 1029 |
+
|
| 1030 |
+
logger.info(f"Login successful for: {form_data.username}")
|
| 1031 |
+
return {"access_token": access_token, "token_type": "bearer"}
|
| 1032 |
+
except Exception as e:
|
| 1033 |
+
logger.error(f"Token endpoint error: {e}")
|
| 1034 |
+
raise HTTPException(
|
| 1035 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 1036 |
+
detail=f"Login error: {str(e)}",
|
| 1037 |
+
)
|
| 1038 |
+
|
| 1039 |
+
|
| 1040 |
+
@app.get("/debug/token")
|
| 1041 |
+
async def debug_token(authorization: str = Header(None)):
|
| 1042 |
+
"""Debug endpoint to check token validity"""
|
| 1043 |
+
try:
|
| 1044 |
+
if not authorization:
|
| 1045 |
+
return {"valid": False, "error": "No authorization header provided"}
|
| 1046 |
+
|
| 1047 |
+
# Extract token from Authorization header
|
| 1048 |
+
scheme, token = authorization.split()
|
| 1049 |
+
if scheme.lower() != 'bearer':
|
| 1050 |
+
return {"valid": False, "error": "Not a bearer token"}
|
| 1051 |
+
|
| 1052 |
+
# Log the token for debugging
|
| 1053 |
+
logger.info(f"Debugging token: {token[:10]}...")
|
| 1054 |
+
|
| 1055 |
+
# Try to validate the token
|
| 1056 |
+
try:
|
| 1057 |
+
user = await get_current_active_user(token)
|
| 1058 |
+
return {"valid": True, "user_id": user.id, "email": user.email}
|
| 1059 |
+
except Exception as e:
|
| 1060 |
+
return {"valid": False, "error": str(e)}
|
| 1061 |
+
except Exception as e:
|
| 1062 |
+
return {"valid": False, "error": f"Token debug error: {str(e)}"}
|
| 1063 |
+
|
| 1064 |
+
|
| 1065 |
+
@app.post("/login")
|
| 1066 |
+
async def api_login(email: str, password: str):
|
| 1067 |
+
success, result = login_user(email, password)
|
| 1068 |
+
if not success:
|
| 1069 |
+
raise HTTPException(
|
| 1070 |
+
status_code=status.HTTP_401_UNAUTHORIZED,
|
| 1071 |
+
detail=result
|
| 1072 |
+
)
|
| 1073 |
+
return result
|
| 1074 |
+
|
| 1075 |
+
@app.get("/health")
|
| 1076 |
+
def health_check():
|
| 1077 |
+
"""Simple health check endpoint to verify the API is running"""
|
| 1078 |
+
return {"status": "ok", "message": "API is running"}
|
| 1079 |
+
|
| 1080 |
+
@app.get("/users/me", response_model=User)
|
| 1081 |
+
async def read_users_me(current_user: User = Depends(get_current_active_user)):
|
| 1082 |
+
return current_user
|
| 1083 |
+
|
| 1084 |
+
@app.post("/analyze_legal_audio")
|
| 1085 |
+
async def analyze_legal_audio(
|
| 1086 |
+
file: UploadFile = File(...),
|
| 1087 |
+
current_user: User = Depends(get_current_active_user)
|
| 1088 |
+
):
|
| 1089 |
+
"""Analyzes legal audio by transcribing and analyzing the transcript."""
|
| 1090 |
+
try:
|
| 1091 |
+
# Calculate file size in MB
|
| 1092 |
+
file_content = await file.read()
|
| 1093 |
+
file_size_mb = len(file_content) / (1024 * 1024)
|
| 1094 |
+
|
| 1095 |
+
# Check subscription access for audio analysis
|
| 1096 |
+
check_subscription_access(current_user, "audio_analysis", file_size_mb)
|
| 1097 |
+
|
| 1098 |
+
print(f"Processing audio file: {file.filename}")
|
| 1099 |
+
|
| 1100 |
+
# Create a temporary file to store the uploaded audio
|
| 1101 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp:
|
| 1102 |
+
tmp.write(file_content)
|
| 1103 |
+
tmp_path = tmp.name
|
| 1104 |
+
|
| 1105 |
+
# Process audio to extract transcript
|
| 1106 |
+
transcript = process_audio_to_text(tmp_path)
|
| 1107 |
+
|
| 1108 |
+
# Clean up the temporary file
|
| 1109 |
+
os.unlink(tmp_path)
|
| 1110 |
+
|
| 1111 |
+
if not transcript:
|
| 1112 |
+
raise HTTPException(status_code=400, detail="Could not extract transcript from audio")
|
| 1113 |
+
|
| 1114 |
+
# Generate a task ID
|
| 1115 |
+
task_id = str(uuid.uuid4())
|
| 1116 |
+
|
| 1117 |
+
# Store document context for later retrieval
|
| 1118 |
+
store_document_context(task_id, transcript)
|
| 1119 |
+
|
| 1120 |
+
# Basic analysis
|
| 1121 |
+
summary = summarize_text(transcript)
|
| 1122 |
+
entities = extract_named_entities(transcript)
|
| 1123 |
+
risk_scores = analyze_risk(transcript)
|
| 1124 |
+
|
| 1125 |
+
# Prepare response
|
| 1126 |
+
response = {
|
| 1127 |
+
"task_id": task_id,
|
| 1128 |
+
"transcript": transcript,
|
| 1129 |
+
"summary": summary,
|
| 1130 |
+
"entities": entities,
|
| 1131 |
+
"risk_assessment": risk_scores,
|
| 1132 |
+
"subscription_tier": current_user.subscription_tier
|
| 1133 |
+
}
|
| 1134 |
+
|
| 1135 |
+
# Add premium features if user has access
|
| 1136 |
+
if current_user.subscription_tier == "premium_tier": # Change from premium_tier to premium
|
| 1137 |
+
# Add detailed risk assessment
|
| 1138 |
+
if "detailed_risk_assessment" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]:
|
| 1139 |
+
detailed_risk = get_detailed_risk_info(transcript)
|
| 1140 |
+
response["detailed_risk_assessment"] = detailed_risk
|
| 1141 |
+
|
| 1142 |
+
return response
|
| 1143 |
+
|
| 1144 |
+
except Exception as e:
|
| 1145 |
+
print(f"Error analyzing audio: {str(e)}")
|
| 1146 |
+
raise HTTPException(status_code=500, detail=f"Error analyzing audio: {str(e)}")
|
| 1147 |
+
|
| 1148 |
+
|
| 1149 |
+
|
| 1150 |
+
# Add these new endpoints before the if __name__ == "__main__" line
|
| 1151 |
+
@app.get("/users/me/subscription")
|
| 1152 |
+
async def get_user_subscription(current_user: User = Depends(get_current_active_user)):
|
| 1153 |
+
"""Get the current user's subscription details"""
|
| 1154 |
+
try:
|
| 1155 |
+
# Get subscription details from database
|
| 1156 |
+
conn = get_db_connection()
|
| 1157 |
+
cursor = conn.cursor()
|
| 1158 |
+
|
| 1159 |
+
# Get the most recent active subscription
|
| 1160 |
+
try:
|
| 1161 |
+
cursor.execute(
|
| 1162 |
+
"SELECT id, tier, status, created_at, expires_at, paypal_subscription_id FROM subscriptions "
|
| 1163 |
+
"WHERE user_id = ? AND status = 'active' ORDER BY created_at DESC LIMIT 1",
|
| 1164 |
+
(current_user.id,)
|
| 1165 |
+
)
|
| 1166 |
+
subscription = cursor.fetchone()
|
| 1167 |
+
except sqlite3.OperationalError as e:
|
| 1168 |
+
# Handle missing tier column
|
| 1169 |
+
if "no such column: tier" in str(e):
|
| 1170 |
+
logger.warning("Subscriptions table missing 'tier' column. Returning default subscription.")
|
| 1171 |
+
subscription = None
|
| 1172 |
+
else:
|
| 1173 |
+
raise
|
| 1174 |
+
|
| 1175 |
+
# Get subscription tiers with pricing directly from SUBSCRIPTION_TIERS
|
| 1176 |
+
subscription_tiers = {
|
| 1177 |
+
"free_tier": {
|
| 1178 |
+
"price": SUBSCRIPTION_TIERS["free_tier"]["price"],
|
| 1179 |
+
"currency": SUBSCRIPTION_TIERS["free_tier"]["currency"],
|
| 1180 |
+
"features": SUBSCRIPTION_TIERS["free_tier"]["features"]
|
| 1181 |
+
},
|
| 1182 |
+
"standard_tier": {
|
| 1183 |
+
"price": SUBSCRIPTION_TIERS["standard_tier"]["price"],
|
| 1184 |
+
"currency": SUBSCRIPTION_TIERS["standard_tier"]["currency"],
|
| 1185 |
+
"features": SUBSCRIPTION_TIERS["standard_tier"]["features"]
|
| 1186 |
+
},
|
| 1187 |
+
"premium_tier": {
|
| 1188 |
+
"price": SUBSCRIPTION_TIERS["premium_tier"]["price"],
|
| 1189 |
+
"currency": SUBSCRIPTION_TIERS["premium_tier"]["currency"],
|
| 1190 |
+
"features": SUBSCRIPTION_TIERS["premium_tier"]["features"]
|
| 1191 |
+
}
|
| 1192 |
+
}
|
| 1193 |
+
|
| 1194 |
+
if subscription:
|
| 1195 |
+
sub_id, tier, status, created_at, expires_at, paypal_id = subscription
|
| 1196 |
+
result = {
|
| 1197 |
+
"id": sub_id,
|
| 1198 |
+
"tier": tier,
|
| 1199 |
+
"status": status,
|
| 1200 |
+
"created_at": created_at,
|
| 1201 |
+
"expires_at": expires_at,
|
| 1202 |
+
"paypal_subscription_id": paypal_id,
|
| 1203 |
+
"current_tier": current_user.subscription_tier,
|
| 1204 |
+
"subscription_tiers": subscription_tiers
|
| 1205 |
+
}
|
| 1206 |
+
else:
|
| 1207 |
+
result = {
|
| 1208 |
+
"tier": "free_tier",
|
| 1209 |
+
"status": "active",
|
| 1210 |
+
"current_tier": current_user.subscription_tier,
|
| 1211 |
+
"subscription_tiers": subscription_tiers
|
| 1212 |
+
}
|
| 1213 |
+
|
| 1214 |
+
conn.close()
|
| 1215 |
+
return result
|
| 1216 |
+
except Exception as e:
|
| 1217 |
+
logger.error(f"Error getting subscription: {str(e)}")
|
| 1218 |
+
raise HTTPException(status_code=500, detail=f"Error getting subscription: {str(e)}")
|
| 1219 |
+
# Add this model definition before your endpoints
|
| 1220 |
+
class SubscriptionCreate(BaseModel):
|
| 1221 |
+
tier: str
|
| 1222 |
+
|
| 1223 |
+
@app.post("/create_subscription")
|
| 1224 |
+
async def create_subscription(
|
| 1225 |
+
subscription: SubscriptionCreate,
|
| 1226 |
+
current_user: User = Depends(get_current_active_user)
|
| 1227 |
+
):
|
| 1228 |
+
"""Create a subscription for the current user"""
|
| 1229 |
+
try:
|
| 1230 |
+
# Log the request for debugging
|
| 1231 |
+
logger.info(f"Creating subscription for user {current_user.email} with tier {subscription.tier}")
|
| 1232 |
+
logger.info(f"Available tiers: {list(SUBSCRIPTION_TIERS.keys())}")
|
| 1233 |
+
|
| 1234 |
+
# Validate tier
|
| 1235 |
+
valid_tiers = ["standard_tier", "premium_tier"]
|
| 1236 |
+
if subscription.tier not in valid_tiers:
|
| 1237 |
+
logger.warning(f"Invalid tier requested: {subscription.tier}")
|
| 1238 |
+
raise HTTPException(status_code=400, detail=f"Invalid tier: {subscription.tier}. Must be one of {valid_tiers}")
|
| 1239 |
+
|
| 1240 |
+
# Create subscription
|
| 1241 |
+
logger.info(f"Calling create_user_subscription with email: {current_user.email}, tier: {subscription.tier}")
|
| 1242 |
+
success, result = create_user_subscription(current_user.email, subscription.tier)
|
| 1243 |
+
|
| 1244 |
+
if not success:
|
| 1245 |
+
logger.error(f"Failed to create subscription: {result}")
|
| 1246 |
+
raise HTTPException(status_code=400, detail=result)
|
| 1247 |
+
|
| 1248 |
+
logger.info(f"Subscription created successfully: {result}")
|
| 1249 |
+
return result
|
| 1250 |
+
except Exception as e:
|
| 1251 |
+
logger.error(f"Error creating subscription: {str(e)}")
|
| 1252 |
+
# Include the full traceback for better debugging
|
| 1253 |
+
import traceback
|
| 1254 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 1255 |
+
raise HTTPException(status_code=500, detail=f"Error creating subscription: {str(e)}")
|
| 1256 |
+
|
| 1257 |
+
@app.post("/subscribe/{tier}")
|
| 1258 |
+
async def subscribe_to_tier(
|
| 1259 |
+
tier: str,
|
| 1260 |
+
current_user: User = Depends(get_current_active_user)
|
| 1261 |
+
):
|
| 1262 |
+
"""Subscribe to a specific tier"""
|
| 1263 |
+
try:
|
| 1264 |
+
# Validate tier
|
| 1265 |
+
valid_tiers = ["standard_tier", "premium_tier"]
|
| 1266 |
+
if tier not in valid_tiers:
|
| 1267 |
+
raise HTTPException(status_code=400, detail=f"Invalid tier: {tier}. Must be one of {valid_tiers}")
|
| 1268 |
+
|
| 1269 |
+
# Create subscription
|
| 1270 |
+
success, result = create_user_subscription(current_user.email, tier)
|
| 1271 |
+
|
| 1272 |
+
if not success:
|
| 1273 |
+
raise HTTPException(status_code=400, detail=result)
|
| 1274 |
+
|
| 1275 |
+
return result
|
| 1276 |
+
except Exception as e:
|
| 1277 |
+
logger.error(f"Error creating subscription: {str(e)}")
|
| 1278 |
+
raise HTTPException(status_code=500, detail=f"Error creating subscription: {str(e)}")
|
| 1279 |
+
|
| 1280 |
+
@app.post("/subscription/create")
|
| 1281 |
+
async def create_subscription(request: Request, current_user: User = Depends(get_current_active_user)):
|
| 1282 |
+
"""Create a subscription for the current user"""
|
| 1283 |
+
try:
|
| 1284 |
+
data = await request.json()
|
| 1285 |
+
tier = data.get("tier")
|
| 1286 |
+
|
| 1287 |
+
if not tier:
|
| 1288 |
+
return JSONResponse(
|
| 1289 |
+
status_code=400,
|
| 1290 |
+
content={"detail": "Tier is required"}
|
| 1291 |
+
)
|
| 1292 |
+
|
| 1293 |
+
# Log the request for debugging
|
| 1294 |
+
logger.info(f"Creating subscription for user {current_user.email} with tier {tier}")
|
| 1295 |
+
|
| 1296 |
+
# Create the subscription using the imported function directly
|
| 1297 |
+
success, result = create_user_subscription(current_user.email, tier)
|
| 1298 |
+
|
| 1299 |
+
if success:
|
| 1300 |
+
# Make sure we're returning the approval_url in the response
|
| 1301 |
+
logger.info(f"Subscription created successfully: {result}")
|
| 1302 |
+
logger.info(f"Approval URL: {result.get('approval_url')}")
|
| 1303 |
+
|
| 1304 |
+
return {
|
| 1305 |
+
"success": True,
|
| 1306 |
+
"data": {
|
| 1307 |
+
"approval_url": result["approval_url"],
|
| 1308 |
+
"subscription_id": result["subscription_id"],
|
| 1309 |
+
"tier": result["tier"]
|
| 1310 |
+
}
|
| 1311 |
+
}
|
| 1312 |
+
else:
|
| 1313 |
+
logger.error(f"Failed to create subscription: {result}")
|
| 1314 |
+
return JSONResponse(
|
| 1315 |
+
status_code=400,
|
| 1316 |
+
content={"success": False, "detail": result}
|
| 1317 |
+
)
|
| 1318 |
+
except Exception as e:
|
| 1319 |
+
logger.error(f"Error creating subscription: {str(e)}")
|
| 1320 |
+
import traceback
|
| 1321 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 1322 |
+
return JSONResponse(
|
| 1323 |
+
status_code=500,
|
| 1324 |
+
content={"success": False, "detail": f"Error creating subscription: {str(e)}"}
|
| 1325 |
+
)
|
| 1326 |
+
|
| 1327 |
+
@app.post("/admin/initialize-paypal-plans")
|
| 1328 |
+
async def initialize_paypal_plans(request: Request):
|
| 1329 |
+
"""Initialize PayPal subscription plans"""
|
| 1330 |
+
try:
|
| 1331 |
+
# This should be protected with admin authentication in production
|
| 1332 |
+
plans = initialize_subscription_plans()
|
| 1333 |
+
|
| 1334 |
+
if plans:
|
| 1335 |
+
return JSONResponse(
|
| 1336 |
+
status_code=200,
|
| 1337 |
+
content={"success": True, "plans": plans}
|
| 1338 |
+
)
|
| 1339 |
+
else:
|
| 1340 |
+
return JSONResponse(
|
| 1341 |
+
status_code=500,
|
| 1342 |
+
content={"success": False, "detail": "Failed to initialize plans"}
|
| 1343 |
+
)
|
| 1344 |
+
except Exception as e:
|
| 1345 |
+
logger.error(f"Error initializing PayPal plans: {str(e)}")
|
| 1346 |
+
return JSONResponse(
|
| 1347 |
+
status_code=500,
|
| 1348 |
+
content={"success": False, "detail": f"Error initializing plans: {str(e)}"}
|
| 1349 |
+
)
|
| 1350 |
+
|
| 1351 |
+
|
| 1352 |
+
@app.post("/subscription/verify")
|
| 1353 |
+
async def verify_subscription(request: Request, current_user: User = Depends(get_current_active_user)):
|
| 1354 |
+
"""Verify a subscription after payment"""
|
| 1355 |
+
try:
|
| 1356 |
+
data = await request.json()
|
| 1357 |
+
subscription_id = data.get("subscription_id")
|
| 1358 |
+
|
| 1359 |
+
if not subscription_id:
|
| 1360 |
+
return JSONResponse(
|
| 1361 |
+
status_code=400,
|
| 1362 |
+
content={"success": False, "detail": "Subscription ID is required"}
|
| 1363 |
+
)
|
| 1364 |
+
|
| 1365 |
+
logger.info(f"Verifying subscription: {subscription_id}")
|
| 1366 |
+
|
| 1367 |
+
# Verify the subscription with PayPal
|
| 1368 |
+
success, result = verify_paypal_subscription(subscription_id)
|
| 1369 |
+
|
| 1370 |
+
if not success:
|
| 1371 |
+
logger.error(f"Subscription verification failed: {result}")
|
| 1372 |
+
return JSONResponse(
|
| 1373 |
+
status_code=400,
|
| 1374 |
+
content={"success": False, "detail": str(result)}
|
| 1375 |
+
)
|
| 1376 |
+
|
| 1377 |
+
# Update the user's subscription in the database
|
| 1378 |
+
conn = get_db_connection()
|
| 1379 |
+
cursor = conn.cursor()
|
| 1380 |
+
|
| 1381 |
+
# Get the subscription details
|
| 1382 |
+
cursor.execute(
|
| 1383 |
+
"SELECT tier FROM subscriptions WHERE paypal_subscription_id = ?",
|
| 1384 |
+
(subscription_id,)
|
| 1385 |
+
)
|
| 1386 |
+
subscription = cursor.fetchone()
|
| 1387 |
+
|
| 1388 |
+
if not subscription:
|
| 1389 |
+
# This is a new subscription, get the tier from the PayPal response
|
| 1390 |
+
tier = "standard_tier" # Default to standard tier
|
| 1391 |
+
# You could extract the tier from the PayPal plan ID if needed
|
| 1392 |
+
|
| 1393 |
+
# Create a new subscription record
|
| 1394 |
+
sub_id = str(uuid.uuid4())
|
| 1395 |
+
start_date = datetime.now()
|
| 1396 |
+
expires_at = start_date + timedelta(days=30)
|
| 1397 |
+
|
| 1398 |
+
cursor.execute(
|
| 1399 |
+
"INSERT INTO subscriptions (id, user_id, tier, status, created_at, expires_at, paypal_subscription_id) VALUES (?, ?, ?, ?, ?, ?, ?)",
|
| 1400 |
+
(sub_id, current_user.id, tier, "active", start_date, expires_at, subscription_id)
|
| 1401 |
+
)
|
| 1402 |
+
else:
|
| 1403 |
+
# Update existing subscription
|
| 1404 |
+
tier = subscription[0]
|
| 1405 |
+
cursor.execute(
|
| 1406 |
+
"UPDATE subscriptions SET status = 'active' WHERE paypal_subscription_id = ?",
|
| 1407 |
+
(subscription_id,)
|
| 1408 |
+
)
|
| 1409 |
+
|
| 1410 |
+
# Update user's subscription tier
|
| 1411 |
+
cursor.execute(
|
| 1412 |
+
"UPDATE users SET subscription_tier = ? WHERE id = ?",
|
| 1413 |
+
(tier, current_user.id)
|
| 1414 |
+
)
|
| 1415 |
+
|
| 1416 |
+
conn.commit()
|
| 1417 |
+
conn.close()
|
| 1418 |
+
|
| 1419 |
+
return JSONResponse(
|
| 1420 |
+
status_code=200,
|
| 1421 |
+
content={"success": True, "detail": "Subscription verified successfully"}
|
| 1422 |
+
)
|
| 1423 |
+
|
| 1424 |
+
except Exception as e:
|
| 1425 |
+
logger.error(f"Error verifying subscription: {str(e)}")
|
| 1426 |
+
return JSONResponse(
|
| 1427 |
+
status_code=500,
|
| 1428 |
+
content={"success": False, "detail": f"Error verifying subscription: {str(e)}"}
|
| 1429 |
+
)
|
| 1430 |
+
|
| 1431 |
+
@app.post("/subscription/webhook")
|
| 1432 |
+
async def subscription_webhook(request: Request):
|
| 1433 |
+
"""Handle PayPal subscription webhooks"""
|
| 1434 |
+
try:
|
| 1435 |
+
payload = await request.json()
|
| 1436 |
+
success, result = handle_subscription_webhook(payload)
|
| 1437 |
+
|
| 1438 |
+
if not success:
|
| 1439 |
+
logger.error(f"Webhook processing failed: {result}")
|
| 1440 |
+
return {"status": "error", "message": result}
|
| 1441 |
+
|
| 1442 |
+
return {"status": "success", "message": result}
|
| 1443 |
+
except Exception as e:
|
| 1444 |
+
logger.error(f"Error processing webhook: {str(e)}")
|
| 1445 |
+
return {"status": "error", "message": f"Error processing webhook: {str(e)}"}
|
| 1446 |
+
|
| 1447 |
+
@app.get("/subscription/verify/{subscription_id}")
|
| 1448 |
+
async def verify_subscription(
|
| 1449 |
+
subscription_id: str,
|
| 1450 |
+
current_user: User = Depends(get_current_active_user)
|
| 1451 |
+
):
|
| 1452 |
+
"""Verify a subscription payment and update user tier"""
|
| 1453 |
+
try:
|
| 1454 |
+
# Verify the subscription
|
| 1455 |
+
success, result = verify_subscription_payment(subscription_id)
|
| 1456 |
+
|
| 1457 |
+
if not success:
|
| 1458 |
+
raise HTTPException(status_code=400, detail=f"Subscription verification failed: {result}")
|
| 1459 |
+
|
| 1460 |
+
# Get the plan ID from the subscription to determine tier
|
| 1461 |
+
plan_id = result.get("plan_id", "")
|
| 1462 |
+
|
| 1463 |
+
# Connect to DB to get the tier for this plan
|
| 1464 |
+
conn = get_db_connection()
|
| 1465 |
+
cursor = conn.cursor()
|
| 1466 |
+
cursor.execute("SELECT tier FROM paypal_plans WHERE plan_id = ?", (plan_id,))
|
| 1467 |
+
tier_result = cursor.fetchone()
|
| 1468 |
+
conn.close()
|
| 1469 |
+
|
| 1470 |
+
if not tier_result:
|
| 1471 |
+
raise HTTPException(status_code=400, detail="Could not determine subscription tier")
|
| 1472 |
+
|
| 1473 |
+
tier = tier_result[0]
|
| 1474 |
+
|
| 1475 |
+
# Update the user's subscription
|
| 1476 |
+
success, update_result = update_user_subscription(current_user.email, subscription_id, tier)
|
| 1477 |
+
|
| 1478 |
+
if not success:
|
| 1479 |
+
raise HTTPException(status_code=500, detail=f"Failed to update subscription: {update_result}")
|
| 1480 |
+
|
| 1481 |
+
return {
|
| 1482 |
+
"message": f"Successfully subscribed to {tier} tier",
|
| 1483 |
+
"subscription_id": subscription_id,
|
| 1484 |
+
"status": result.get("status", ""),
|
| 1485 |
+
"next_billing_time": result.get("billing_info", {}).get("next_billing_time", "")
|
| 1486 |
+
}
|
| 1487 |
+
|
| 1488 |
+
except HTTPException:
|
| 1489 |
+
raise
|
| 1490 |
+
except Exception as e:
|
| 1491 |
+
print(f"Subscription verification error: {str(e)}")
|
| 1492 |
+
raise HTTPException(status_code=500, detail=f"Subscription verification failed: {str(e)}")
|
| 1493 |
+
|
| 1494 |
+
@app.post("/webhook/paypal")
|
| 1495 |
+
async def paypal_webhook(request: Request):
|
| 1496 |
+
"""Handle PayPal subscription webhooks"""
|
| 1497 |
+
try:
|
| 1498 |
+
payload = await request.json()
|
| 1499 |
+
logger.info(f"Received PayPal webhook: {payload.get('event_type', 'unknown event')}")
|
| 1500 |
+
|
| 1501 |
+
# Process the webhook
|
| 1502 |
+
result = handle_subscription_webhook(payload)
|
| 1503 |
+
|
| 1504 |
+
return {"status": "success", "message": "Webhook processed"}
|
| 1505 |
+
except Exception as e:
|
| 1506 |
+
logger.error(f"Webhook processing error: {str(e)}")
|
| 1507 |
+
# Return 200 even on error to acknowledge receipt to PayPal
|
| 1508 |
+
return {"status": "error", "message": str(e)}
|
| 1509 |
+
|
| 1510 |
+
# Add this to your startup code
|
| 1511 |
+
@app.on_event("startup")
|
| 1512 |
+
async def startup_event():
|
| 1513 |
+
"""Initialize subscription plans on startup"""
|
| 1514 |
+
try:
|
| 1515 |
+
# Initialize PayPal subscription plans if needed
|
| 1516 |
+
# If you have an initialize_subscription_plans function in your paypal_integration.py,
|
| 1517 |
+
# you can call it here
|
| 1518 |
+
print("Application started successfully")
|
| 1519 |
+
except Exception as e:
|
| 1520 |
+
print(f"Error during startup: {str(e)}")
|
| 1521 |
+
|
| 1522 |
+
if __name__ == "__main__":
|
| 1523 |
+
import uvicorn
|
| 1524 |
+
port = int(os.environ.get("PORT", 7860))
|
| 1525 |
+
host = os.environ.get("HOST", "0.0.0.0")
|
| 1526 |
+
uvicorn.run("app:app", host=host, port=port, reload=True)
|