Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion import ( | |
| _resize_with_antialiasing, | |
| StableVideoDiffusionPipelineOutput, | |
| StableVideoDiffusionPipeline, | |
| retrieve_timesteps, | |
| ) | |
| from diffusers.utils import logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class DepthCrafterPipeline(StableVideoDiffusionPipeline): | |
| def encode_video( | |
| self, | |
| video: torch.Tensor, | |
| chunk_size: int = 14, | |
| ) -> torch.Tensor: | |
| """ | |
| :param video: [b, c, h, w] in range [-1, 1], the b may contain multiple videos or frames | |
| :param chunk_size: the chunk size to encode video | |
| :return: image_embeddings in shape of [b, 1024] | |
| """ | |
| video_224 = _resize_with_antialiasing(video.float(), (224, 224)) | |
| video_224 = (video_224 + 1.0) / 2.0 # [-1, 1] -> [0, 1] | |
| embeddings = [] | |
| for i in range(0, video_224.shape[0], chunk_size): | |
| tmp = self.feature_extractor( | |
| images=video_224[i : i + chunk_size], | |
| do_normalize=True, | |
| do_center_crop=False, | |
| do_resize=False, | |
| do_rescale=False, | |
| return_tensors="pt", | |
| ).pixel_values.to(video.device, dtype=video.dtype) | |
| embeddings.append(self.image_encoder(tmp).image_embeds) # [b, 1024] | |
| embeddings = torch.cat(embeddings, dim=0) # [t, 1024] | |
| return embeddings | |
| def encode_vae_video( | |
| self, | |
| video: torch.Tensor, | |
| chunk_size: int = 14, | |
| ): | |
| """ | |
| :param video: [b, c, h, w] in range [-1, 1], the b may contain multiple videos or frames | |
| :param chunk_size: the chunk size to encode video | |
| :return: vae latents in shape of [b, c, h, w] | |
| """ | |
| video_latents = [] | |
| for i in range(0, video.shape[0], chunk_size): | |
| video_latents.append( | |
| self.vae.encode(video[i : i + chunk_size]).latent_dist.mode() | |
| ) | |
| video_latents = torch.cat(video_latents, dim=0) | |
| return video_latents | |
| def check_inputs(video, height, width): | |
| """ | |
| :param video: | |
| :param height: | |
| :param width: | |
| :return: | |
| """ | |
| if not isinstance(video, torch.Tensor) and not isinstance(video, np.ndarray): | |
| raise ValueError( | |
| f"Expected `video` to be a `torch.Tensor` or `VideoReader`, but got a {type(video)}" | |
| ) | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
| ) | |
| def __call__( | |
| self, | |
| video: Union[np.ndarray, torch.Tensor], | |
| height: int = 576, | |
| width: int = 1024, | |
| num_inference_steps: int = 25, | |
| guidance_scale: float = 1.0, | |
| window_size: Optional[int] = 110, | |
| noise_aug_strength: float = 0.02, | |
| decode_chunk_size: Optional[int] = None, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| return_dict: bool = True, | |
| overlap: int = 25, | |
| track_time: bool = False, | |
| ): | |
| """ | |
| :param video: in shape [t, h, w, c] if np.ndarray or [t, c, h, w] if torch.Tensor, in range [0, 1] | |
| :param height: | |
| :param width: | |
| :param num_inference_steps: | |
| :param guidance_scale: | |
| :param window_size: sliding window processing size | |
| :param fps: | |
| :param motion_bucket_id: | |
| :param noise_aug_strength: | |
| :param decode_chunk_size: | |
| :param generator: | |
| :param latents: | |
| :param output_type: | |
| :param callback_on_step_end: | |
| :param callback_on_step_end_tensor_inputs: | |
| :param return_dict: | |
| :return: | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| num_frames = video.shape[0] | |
| decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else 8 | |
| if num_frames <= window_size: | |
| window_size = num_frames | |
| overlap = 0 | |
| stride = window_size - overlap | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(video, height, width) | |
| # 2. Define call parameters | |
| batch_size = 1 | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| self._guidance_scale = guidance_scale | |
| # 3. Encode input video | |
| if isinstance(video, np.ndarray): | |
| video = torch.from_numpy(video.transpose(0, 3, 1, 2)) | |
| else: | |
| assert isinstance(video, torch.Tensor) | |
| video = video.to(device=device, dtype=self.dtype) | |
| video = video * 2.0 - 1.0 # [0,1] -> [-1,1], in [t, c, h, w] | |
| if track_time: | |
| start_event = torch.cuda.Event(enable_timing=True) | |
| encode_event = torch.cuda.Event(enable_timing=True) | |
| denoise_event = torch.cuda.Event(enable_timing=True) | |
| decode_event = torch.cuda.Event(enable_timing=True) | |
| start_event.record() | |
| video_embeddings = self.encode_video( | |
| video, chunk_size=decode_chunk_size | |
| ).unsqueeze( | |
| 0 | |
| ) # [1, t, 1024] | |
| torch.cuda.empty_cache() | |
| # 4. Encode input image using VAE | |
| noise = randn_tensor( | |
| video.shape, generator=generator, device=device, dtype=video.dtype | |
| ) | |
| video = video + noise_aug_strength * noise # in [t, c, h, w] | |
| # pdb.set_trace() | |
| needs_upcasting = ( | |
| self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| ) | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float32) | |
| video_latents = self.encode_vae_video( | |
| video.to(self.vae.dtype), | |
| chunk_size=decode_chunk_size, | |
| ).unsqueeze( | |
| 0 | |
| ) # [1, t, c, h, w] | |
| if track_time: | |
| encode_event.record() | |
| torch.cuda.synchronize() | |
| elapsed_time_ms = start_event.elapsed_time(encode_event) | |
| print(f"Elapsed time for encoding video: {elapsed_time_ms} ms") | |
| torch.cuda.empty_cache() | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| # 5. Get Added Time IDs | |
| added_time_ids = self._get_add_time_ids( | |
| 7, | |
| 127, | |
| noise_aug_strength, | |
| video_embeddings.dtype, | |
| batch_size, | |
| 1, | |
| False, | |
| ) # [1 or 2, 3] | |
| added_time_ids = added_time_ids.to(device) | |
| # 6. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, None, None | |
| ) | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| # 7. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents_init = self.prepare_latents( | |
| batch_size, | |
| window_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| video_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) # [1, t, c, h, w] | |
| latents_all = None | |
| idx_start = 0 | |
| if overlap > 0: | |
| weights = torch.linspace(0, 1, overlap, device=device) | |
| weights = weights.view(1, overlap, 1, 1, 1) | |
| else: | |
| weights = None | |
| torch.cuda.empty_cache() | |
| # inference strategy for long videos | |
| # two main strategies: 1. noise init from previous frame, 2. segments stitching | |
| while idx_start < num_frames - overlap: | |
| idx_end = min(idx_start + window_size, num_frames) | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| # 9. Denoising loop | |
| latents = latents_init[:, : idx_end - idx_start].clone() | |
| latents_init = torch.cat( | |
| [latents_init[:, -overlap:], latents_init[:, :stride]], dim=1 | |
| ) | |
| video_latents_current = video_latents[:, idx_start:idx_end] | |
| video_embeddings_current = video_embeddings[:, idx_start:idx_end] | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if latents_all is not None and i == 0: | |
| latents[:, :overlap] = ( | |
| latents_all[:, -overlap:] | |
| + latents[:, :overlap] | |
| / self.scheduler.init_noise_sigma | |
| * self.scheduler.sigmas[i] | |
| ) | |
| latent_model_input = latents # [1, t, c, h, w] | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) # [1, t, c, h, w] | |
| latent_model_input = torch.cat( | |
| [latent_model_input, video_latents_current], dim=2 | |
| ) | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=video_embeddings_current, | |
| added_time_ids=added_time_ids, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| latent_model_input = latents | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| latent_model_input = torch.cat( | |
| [latent_model_input, torch.zeros_like(latent_model_input)], | |
| dim=2, | |
| ) | |
| noise_pred_uncond = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=torch.zeros_like( | |
| video_embeddings_current | |
| ), | |
| added_time_ids=added_time_ids, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
| noise_pred - noise_pred_uncond | |
| ) | |
| latents = self.scheduler.step(noise_pred, t, latents).prev_sample | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end( | |
| self, i, t, callback_kwargs | |
| ) | |
| latents = callback_outputs.pop("latents", latents) | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps | |
| and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if latents_all is None: | |
| latents_all = latents.clone() | |
| else: | |
| assert weights is not None | |
| # latents_all[:, -overlap:] = ( | |
| # latents[:, :overlap] + latents_all[:, -overlap:] | |
| # ) / 2.0 | |
| latents_all[:, -overlap:] = latents[ | |
| :, :overlap | |
| ] * weights + latents_all[:, -overlap:] * (1 - weights) | |
| latents_all = torch.cat([latents_all, latents[:, overlap:]], dim=1) | |
| idx_start += stride | |
| if track_time: | |
| denoise_event.record() | |
| torch.cuda.synchronize() | |
| elapsed_time_ms = encode_event.elapsed_time(denoise_event) | |
| print(f"Elapsed time for denoising video: {elapsed_time_ms} ms") | |
| if not output_type == "latent": | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| frames = self.decode_latents(latents_all, num_frames, decode_chunk_size) | |
| if track_time: | |
| decode_event.record() | |
| torch.cuda.synchronize() | |
| elapsed_time_ms = denoise_event.elapsed_time(decode_event) | |
| print(f"Elapsed time for decoding video: {elapsed_time_ms} ms") | |
| frames = self.video_processor.postprocess_video( | |
| video=frames, output_type=output_type | |
| ) | |
| else: | |
| frames = latents_all | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return frames | |
| return StableVideoDiffusionPipelineOutput(frames=frames) | |