Spaces:
Running
on
L40S
Running
on
L40S
| # ORIGINAL LICENSE | |
| # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
| # | |
| # Modified by Zexin He | |
| # The modifications are subject to the same license as the original. | |
| import itertools | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from .utils.renderer import ImportanceRenderer, sample_from_planes | |
| from .utils.ray_sampler import RaySampler | |
| from ...utils.ops import get_rank | |
| class OSGDecoder(nn.Module): | |
| """ | |
| Triplane decoder that gives RGB and sigma values from sampled features. | |
| Using ReLU here instead of Softplus in the original implementation. | |
| Reference: | |
| EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112 | |
| """ | |
| def __init__(self, n_features: int, | |
| hidden_dim: int = 64, | |
| num_layers: int = 2, | |
| activation: nn.Module = nn.ReLU, | |
| sdf_bias='sphere', | |
| sdf_bias_params=0.5, | |
| output_normal=True, | |
| normal_type='finite_difference'): | |
| super().__init__() | |
| self.sdf_bias = sdf_bias | |
| self.sdf_bias_params = sdf_bias_params | |
| self.output_normal = output_normal | |
| self.normal_type = normal_type | |
| self.net = nn.Sequential( | |
| nn.Linear(3 * n_features, hidden_dim), | |
| activation(), | |
| *itertools.chain(*[[ | |
| nn.Linear(hidden_dim, hidden_dim), | |
| activation(), | |
| ] for _ in range(num_layers - 2)]), | |
| nn.Linear(hidden_dim, 1 + 3), | |
| ) | |
| # init all bias to zero | |
| for m in self.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.zeros_(m.bias) | |
| def forward(self, ray_directions, sample_coordinates, plane_axes, planes, options): | |
| # Aggregate features by mean | |
| # sampled_features = sampled_features.mean(1) | |
| # Aggregate features by concatenation | |
| # torch.set_grad_enabled(True) | |
| # sample_coordinates.requires_grad_(True) | |
| sampled_features = sample_from_planes(plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) | |
| _N, n_planes, _M, _C = sampled_features.shape | |
| sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) | |
| x = sampled_features | |
| N, M, C = x.shape | |
| # x = x.contiguous().view(N*M, C) | |
| x = self.net(x) | |
| x = x.view(N, M, -1) | |
| rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF | |
| sdf = x[..., 0:1] | |
| # import ipdb; ipdb.set_trace() | |
| # print(f'sample_coordinates shape: {sample_coordinates.shape}') | |
| # sdf = self.get_shifted_sdf(sample_coordinates, sdf) | |
| # calculate normal | |
| eps = 0.01 | |
| offsets = torch.as_tensor( | |
| [[eps, 0.0, 0.0], [0.0, eps, 0.0], [0.0, 0.0, eps]] | |
| ).to(sample_coordinates) | |
| points_offset = ( | |
| sample_coordinates[..., None, :] + offsets # Float[Tensor, "... 3 3"] | |
| ).clamp(options['sampler_bbox_min'], options['sampler_bbox_max']) | |
| sdf_offset_list = [self.forward_sdf( | |
| plane_axes, | |
| planes, | |
| points_offset[:,:,i,:], | |
| options | |
| ).unsqueeze(-2) for i in range(points_offset.shape[-2])] # Float[Tensor, "... 3 1"] | |
| # import ipdb; ipdb.set_trace() | |
| sdf_offset = torch.cat(sdf_offset_list, -2) | |
| sdf_grad = (sdf_offset[..., 0::1, 0] - sdf) / eps | |
| normal = F.normalize(sdf_grad, dim=-1).to(sdf.dtype) | |
| return {'rgb': rgb, 'sdf': sdf, 'normal': normal, 'sdf_grad': sdf_grad} | |
| def forward_sdf(self, plane_axes, planes, points_offset, options): | |
| sampled_features = sample_from_planes(plane_axes, planes, points_offset, padding_mode='zeros', box_warp=options['box_warp']) | |
| _N, n_planes, _M, _C = sampled_features.shape | |
| sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) | |
| x = sampled_features | |
| N, M, C = x.shape | |
| # x = x.contiguous().view(N*M, C) | |
| x = self.net(x) | |
| x = x.view(N, M, -1) | |
| sdf = x[..., 0:1] | |
| # sdf = self.get_shifted_sdf(points_offset, sdf) | |
| return sdf | |
| def get_shifted_sdf( | |
| self, points, sdf | |
| ): | |
| if self.sdf_bias == "sphere": | |
| assert isinstance(self.sdf_bias_params, float) | |
| radius = self.sdf_bias_params | |
| sdf_bias = (points**2).sum(dim=-1, keepdim=True).sqrt() - radius | |
| else: | |
| raise ValueError(f"Unknown sdf bias {self.cfg.sdf_bias}") | |
| return sdf + sdf_bias.to(sdf.dtype) | |
| class TriplaneSynthesizer(nn.Module): | |
| """ | |
| Synthesizer that renders a triplane volume with planes and a camera. | |
| Reference: | |
| EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19 | |
| """ | |
| DEFAULT_RENDERING_KWARGS = { | |
| 'ray_start': 'auto', | |
| 'ray_end': 'auto', | |
| 'box_warp': 1.2, | |
| # 'box_warp': 1., | |
| 'white_back': True, | |
| 'disparity_space_sampling': False, | |
| 'clamp_mode': 'softplus', | |
| # 'sampler_bbox_min': -1, | |
| # 'sampler_bbox_max': 1., | |
| 'sampler_bbox_min': -0.6, | |
| 'sampler_bbox_max': 0.6, | |
| } | |
| print('DEFAULT_RENDERING_KWARGS') | |
| print(DEFAULT_RENDERING_KWARGS) | |
| def __init__(self, triplane_dim: int, samples_per_ray: int, osg_decoder='default'): | |
| super().__init__() | |
| # attributes | |
| self.triplane_dim = triplane_dim | |
| self.rendering_kwargs = { | |
| **self.DEFAULT_RENDERING_KWARGS, | |
| 'depth_resolution': samples_per_ray, | |
| 'depth_resolution_importance': 0 | |
| # 'depth_resolution': samples_per_ray // 2, | |
| # 'depth_resolution_importance': samples_per_ray // 2, | |
| } | |
| # renderings | |
| self.renderer = ImportanceRenderer() | |
| self.ray_sampler = RaySampler() | |
| # modules | |
| if osg_decoder == 'default': | |
| self.decoder = OSGDecoder(n_features=triplane_dim) | |
| else: | |
| raise NotImplementedError | |
| def forward(self, planes, ray_origins, ray_directions, render_size, bgcolor=None): | |
| # planes: (N, 3, D', H', W') | |
| # render_size: int | |
| assert ray_origins.dim() == 3, "ray_origins should be 3-dimensional" | |
| # Perform volume rendering | |
| rgb_samples, depth_samples, weights_samples, sdf_grad, normal_samples = self.renderer( | |
| planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs, bgcolor | |
| ) | |
| N = planes.shape[0] | |
| # zhaohx : add for normals | |
| normal_samples = F.normalize(normal_samples, dim=-1) | |
| normal_samples = (normal_samples + 1.0) / 2.0 # for visualization | |
| normal_samples = torch.lerp(torch.zeros_like(normal_samples), normal_samples, weights_samples) | |
| # Reshape into 'raw' neural-rendered image | |
| Himg = Wimg = render_size | |
| rgb_images = rgb_samples.permute(0, 2, 1).reshape(N, rgb_samples.shape[-1], Himg, Wimg).contiguous() | |
| depth_images = depth_samples.permute(0, 2, 1).reshape(N, 1, Himg, Wimg) | |
| weight_images = weights_samples.permute(0, 2, 1).reshape(N, 1, Himg, Wimg) | |
| # zhaohx : add for normals | |
| normal_images = normal_samples.permute(0, 2, 1).reshape(N, normal_samples.shape[-1], Himg, Wimg).contiguous() | |
| # return { | |
| # 'images_rgb': rgb_images, | |
| # 'images_depth': depth_images, | |
| # 'images_weight': weight_images, | |
| # } | |
| return { | |
| 'comp_rgb': rgb_images, | |
| 'comp_depth': depth_images, | |
| 'opacity': weight_images, | |
| 'sdf_grad': sdf_grad, | |
| 'comp_normal': normal_images | |
| } | |
| # 输出normal的话在这个return里加 | |
| def forward_grid(self, planes, grid_size: int, aabb: torch.Tensor = None): | |
| # planes: (N, 3, D', H', W') | |
| # grid_size: int | |
| # aabb: (N, 2, 3) | |
| if aabb is None: | |
| aabb = torch.tensor([ | |
| [self.rendering_kwargs['sampler_bbox_min']] * 3, | |
| [self.rendering_kwargs['sampler_bbox_max']] * 3, | |
| ], device=planes.device, dtype=planes.dtype).unsqueeze(0).repeat(planes.shape[0], 1, 1) | |
| assert planes.shape[0] == aabb.shape[0], "Batch size mismatch for planes and aabb" | |
| N = planes.shape[0] | |
| # create grid points for triplane query | |
| grid_points = [] | |
| for i in range(N): | |
| grid_points.append(torch.stack(torch.meshgrid( | |
| torch.linspace(aabb[i, 0, 0], aabb[i, 1, 0], grid_size, device=planes.device), | |
| torch.linspace(aabb[i, 0, 1], aabb[i, 1, 1], grid_size, device=planes.device), | |
| torch.linspace(aabb[i, 0, 2], aabb[i, 1, 2], grid_size, device=planes.device), | |
| indexing='ij', | |
| ), dim=-1).reshape(-1, 3)) | |
| cube_grid = torch.stack(grid_points, dim=0).to(planes.device) | |
| features = self.forward_points(planes, cube_grid) | |
| # reshape into grid | |
| features = { | |
| k: v.reshape(N, grid_size, grid_size, grid_size, -1) | |
| for k, v in features.items() | |
| } | |
| return features | |
| def forward_points(self, planes, points: torch.Tensor, chunk_size: int = 2**20): | |
| # planes: (N, 3, D', H', W') | |
| # points: (N, P, 3) | |
| N, P = points.shape[:2] | |
| # query triplane in chunks | |
| outs = [] | |
| for i in range(0, points.shape[1], chunk_size): | |
| chunk_points = points[:, i:i+chunk_size] | |
| # query triplane | |
| # chunk_out = self.renderer.run_model_activated( | |
| chunk_out = self.renderer.run_model( | |
| planes=planes, | |
| decoder=self.decoder, | |
| sample_coordinates=chunk_points, | |
| sample_directions=torch.zeros_like(chunk_points), | |
| options=self.rendering_kwargs, | |
| ) | |
| outs.append(chunk_out) | |
| # concatenate the outputs | |
| point_features = { | |
| k: torch.cat([out[k] for out in outs], dim=1) | |
| for k in outs[0].keys() | |
| } | |
| return point_features | |