Spaces:
Running
on
L40S
Running
on
L40S
| # Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
| # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
| # -------------------------------------------------------- | |
| # CroCo model during pretraining | |
| # -------------------------------------------------------- | |
| import torch | |
| import torch.nn as nn | |
| torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 | |
| from functools import partial | |
| from models.blocks import Block, DecoderBlock, PatchEmbed | |
| from models.pos_embed import get_2d_sincos_pos_embed, RoPE2D | |
| from models.masking import RandomMask | |
| class CroCoNet(nn.Module): | |
| def __init__(self, | |
| img_size=224, # input image size | |
| patch_size=16, # patch_size | |
| mask_ratio=0.9, # ratios of masked tokens | |
| enc_embed_dim=768, # encoder feature dimension | |
| enc_depth=12, # encoder depth | |
| enc_num_heads=12, # encoder number of heads in the transformer block | |
| dec_embed_dim=512, # decoder feature dimension | |
| dec_depth=8, # decoder depth | |
| dec_num_heads=16, # decoder number of heads in the transformer block | |
| mlp_ratio=4, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| norm_im2_in_dec=True, # whether to apply normalization of the 'memory' = (second image) in the decoder | |
| pos_embed='cosine', # positional embedding (either cosine or RoPE100) | |
| ): | |
| super(CroCoNet, self).__init__() | |
| # patch embeddings (with initialization done as in MAE) | |
| self._set_patch_embed(img_size, patch_size, enc_embed_dim) | |
| # mask generations | |
| self._set_mask_generator(self.patch_embed.num_patches, mask_ratio) | |
| self.pos_embed = pos_embed | |
| if pos_embed=='cosine': | |
| # positional embedding of the encoder | |
| enc_pos_embed = get_2d_sincos_pos_embed(enc_embed_dim, int(self.patch_embed.num_patches**.5), n_cls_token=0) | |
| self.register_buffer('enc_pos_embed', torch.from_numpy(enc_pos_embed).float()) | |
| # positional embedding of the decoder | |
| dec_pos_embed = get_2d_sincos_pos_embed(dec_embed_dim, int(self.patch_embed.num_patches**.5), n_cls_token=0) | |
| self.register_buffer('dec_pos_embed', torch.from_numpy(dec_pos_embed).float()) | |
| # pos embedding in each block | |
| self.rope = None # nothing for cosine | |
| elif pos_embed.startswith('RoPE'): # eg RoPE100 | |
| self.enc_pos_embed = None # nothing to add in the encoder with RoPE | |
| self.dec_pos_embed = None # nothing to add in the decoder with RoPE | |
| if RoPE2D is None: raise ImportError("Cannot find cuRoPE2D, please install it following the README instructions") | |
| freq = float(pos_embed[len('RoPE'):]) | |
| self.rope = RoPE2D(freq=freq) | |
| else: | |
| raise NotImplementedError('Unknown pos_embed '+pos_embed) | |
| # transformer for the encoder | |
| self.enc_depth = enc_depth | |
| self.enc_embed_dim = enc_embed_dim | |
| self.enc_blocks = nn.ModuleList([ | |
| Block(enc_embed_dim, enc_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, rope=self.rope) | |
| for i in range(enc_depth)]) | |
| self.enc_norm = norm_layer(enc_embed_dim) | |
| # masked tokens | |
| self._set_mask_token(dec_embed_dim) | |
| # decoder | |
| self._set_decoder(enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec) | |
| # prediction head | |
| self._set_prediction_head(dec_embed_dim, patch_size) | |
| # initializer weights | |
| self.initialize_weights() | |
| def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768): | |
| self.patch_embed = PatchEmbed(img_size, patch_size, 3, enc_embed_dim) | |
| def _set_mask_generator(self, num_patches, mask_ratio): | |
| self.mask_generator = RandomMask(num_patches, mask_ratio) | |
| def _set_mask_token(self, dec_embed_dim): | |
| self.mask_token = nn.Parameter(torch.zeros(1, 1, dec_embed_dim)) | |
| def _set_decoder(self, enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec): | |
| self.dec_depth = dec_depth | |
| self.dec_embed_dim = dec_embed_dim | |
| # transfer from encoder to decoder | |
| self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True) | |
| # transformer for the decoder | |
| self.dec_blocks = nn.ModuleList([ | |
| DecoderBlock(dec_embed_dim, dec_num_heads, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=norm_layer, norm_mem=norm_im2_in_dec, rope=self.rope) | |
| for i in range(dec_depth)]) | |
| # final norm layer | |
| self.dec_norm = norm_layer(dec_embed_dim) | |
| def _set_prediction_head(self, dec_embed_dim, patch_size): | |
| self.prediction_head = nn.Linear(dec_embed_dim, patch_size**2 * 3, bias=True) | |
| def initialize_weights(self): | |
| # patch embed | |
| self.patch_embed._init_weights() | |
| # mask tokens | |
| if self.mask_token is not None: torch.nn.init.normal_(self.mask_token, std=.02) | |
| # linears and layer norms | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| # we use xavier_uniform following official JAX ViT: | |
| torch.nn.init.xavier_uniform_(m.weight) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def _encode_image(self, image, do_mask=False, return_all_blocks=False): | |
| """ | |
| image has B x 3 x img_size x img_size | |
| do_mask: whether to perform masking or not | |
| return_all_blocks: if True, return the features at the end of every block | |
| instead of just the features from the last block (eg for some prediction heads) | |
| """ | |
| # embed the image into patches (x has size B x Npatches x C) | |
| # and get position if each return patch (pos has size B x Npatches x 2) | |
| x, pos = self.patch_embed(image) | |
| # add positional embedding without cls token | |
| if self.enc_pos_embed is not None: | |
| x = x + self.enc_pos_embed[None,...] | |
| # apply masking | |
| B,N,C = x.size() | |
| if do_mask: | |
| masks = self.mask_generator(x) | |
| x = x[~masks].view(B, -1, C) | |
| posvis = pos[~masks].view(B, -1, 2) | |
| else: | |
| B,N,C = x.size() | |
| masks = torch.zeros((B,N), dtype=bool) | |
| posvis = pos | |
| # now apply the transformer encoder and normalization | |
| if return_all_blocks: | |
| out = [] | |
| for blk in self.enc_blocks: | |
| x = blk(x, posvis) | |
| out.append(x) | |
| out[-1] = self.enc_norm(out[-1]) | |
| return out, pos, masks | |
| else: | |
| for blk in self.enc_blocks: | |
| x = blk(x, posvis) | |
| x = self.enc_norm(x) | |
| return x, pos, masks | |
| def _decoder(self, feat1, pos1, masks1, feat2, pos2, return_all_blocks=False): | |
| """ | |
| return_all_blocks: if True, return the features at the end of every block | |
| instead of just the features from the last block (eg for some prediction heads) | |
| masks1 can be None => assume image1 fully visible | |
| """ | |
| # encoder to decoder layer | |
| visf1 = self.decoder_embed(feat1) | |
| f2 = self.decoder_embed(feat2) | |
| # append masked tokens to the sequence | |
| B,Nenc,C = visf1.size() | |
| if masks1 is None: # downstreams | |
| f1_ = visf1 | |
| else: # pretraining | |
| Ntotal = masks1.size(1) | |
| f1_ = self.mask_token.repeat(B, Ntotal, 1).to(dtype=visf1.dtype) | |
| f1_[~masks1] = visf1.view(B * Nenc, C) | |
| # add positional embedding | |
| if self.dec_pos_embed is not None: | |
| f1_ = f1_ + self.dec_pos_embed | |
| f2 = f2 + self.dec_pos_embed | |
| # apply Transformer blocks | |
| out = f1_ | |
| out2 = f2 | |
| if return_all_blocks: | |
| _out, out = out, [] | |
| for blk in self.dec_blocks: | |
| _out, out2 = blk(_out, out2, pos1, pos2) | |
| out.append(_out) | |
| out[-1] = self.dec_norm(out[-1]) | |
| else: | |
| for blk in self.dec_blocks: | |
| out, out2 = blk(out, out2, pos1, pos2) | |
| out = self.dec_norm(out) | |
| return out | |
| def patchify(self, imgs): | |
| """ | |
| imgs: (B, 3, H, W) | |
| x: (B, L, patch_size**2 *3) | |
| """ | |
| p = self.patch_embed.patch_size[0] | |
| assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0 | |
| h = w = imgs.shape[2] // p | |
| x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p)) | |
| x = torch.einsum('nchpwq->nhwpqc', x) | |
| x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3)) | |
| return x | |
| def unpatchify(self, x, channels=3): | |
| """ | |
| x: (N, L, patch_size**2 *channels) | |
| imgs: (N, 3, H, W) | |
| """ | |
| patch_size = self.patch_embed.patch_size[0] | |
| h = w = int(x.shape[1]**.5) | |
| assert h * w == x.shape[1] | |
| x = x.reshape(shape=(x.shape[0], h, w, patch_size, patch_size, channels)) | |
| x = torch.einsum('nhwpqc->nchpwq', x) | |
| imgs = x.reshape(shape=(x.shape[0], channels, h * patch_size, h * patch_size)) | |
| return imgs | |
| def forward(self, img1, img2): | |
| """ | |
| img1: tensor of size B x 3 x img_size x img_size | |
| img2: tensor of size B x 3 x img_size x img_size | |
| out will be B x N x (3*patch_size*patch_size) | |
| masks are also returned as B x N just in case | |
| """ | |
| # encoder of the masked first image | |
| feat1, pos1, mask1 = self._encode_image(img1, do_mask=True) | |
| # encoder of the second image | |
| feat2, pos2, _ = self._encode_image(img2, do_mask=False) | |
| # decoder | |
| decfeat = self._decoder(feat1, pos1, mask1, feat2, pos2) | |
| # prediction head | |
| out = self.prediction_head(decfeat) | |
| # get target | |
| target = self.patchify(img1) | |
| return out, mask1, target | |