Spaces:
Running
on
L40S
Running
on
L40S
| #!/usr/bin/env python3 | |
| # Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
| # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
| # | |
| # -------------------------------------------------------- | |
| # Script to pre-process the WildRGB-D dataset. | |
| # Usage: | |
| # python3 datasets_preprocess/preprocess_wildrgbd.py --wildrgbd_dir /path/to/wildrgbd | |
| # -------------------------------------------------------- | |
| import argparse | |
| import random | |
| import json | |
| import os | |
| import os.path as osp | |
| import PIL.Image | |
| import numpy as np | |
| import cv2 | |
| from tqdm.auto import tqdm | |
| import matplotlib.pyplot as plt | |
| import path_to_root # noqa | |
| import dust3r.datasets.utils.cropping as cropping # noqa | |
| from dust3r.utils.image import imread_cv2 | |
| def get_parser(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--output_dir", type=str, default="data/wildrgbd_processed") | |
| parser.add_argument("--wildrgbd_dir", type=str, required=True) | |
| parser.add_argument("--train_num_sequences_per_object", type=int, default=50) | |
| parser.add_argument("--test_num_sequences_per_object", type=int, default=10) | |
| parser.add_argument("--num_frames", type=int, default=100) | |
| parser.add_argument("--seed", type=int, default=42) | |
| parser.add_argument("--img_size", type=int, default=512, | |
| help=("lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size")) | |
| return parser | |
| def get_set_list(category_dir, split): | |
| listfiles = ["camera_eval_list.json", "nvs_list.json"] | |
| sequences_all = {s: {k: set() for k in listfiles} for s in ['train', 'val']} | |
| for listfile in listfiles: | |
| with open(osp.join(category_dir, listfile)) as f: | |
| subset_lists_data = json.load(f) | |
| for s in ['train', 'val']: | |
| sequences_all[s][listfile].update(subset_lists_data[s]) | |
| train_intersection = set.intersection(*list(sequences_all['train'].values())) | |
| if split == "train": | |
| return train_intersection | |
| else: | |
| all_seqs = set.union(*list(sequences_all['train'].values()), *list(sequences_all['val'].values())) | |
| return all_seqs.difference(train_intersection) | |
| def prepare_sequences(category, wildrgbd_dir, output_dir, img_size, split, max_num_sequences_per_object, | |
| output_num_frames, seed): | |
| random.seed(seed) | |
| category_dir = osp.join(wildrgbd_dir, category) | |
| category_output_dir = osp.join(output_dir, category) | |
| sequences_all = get_set_list(category_dir, split) | |
| sequences_all = sorted(sequences_all) | |
| sequences_all_tmp = [] | |
| for seq_name in sequences_all: | |
| scene_dir = osp.join(wildrgbd_dir, category_dir, seq_name) | |
| if not os.path.isdir(scene_dir): | |
| print(f'{scene_dir} does not exist, skipped') | |
| continue | |
| sequences_all_tmp.append(seq_name) | |
| sequences_all = sequences_all_tmp | |
| if len(sequences_all) <= max_num_sequences_per_object: | |
| selected_sequences = sequences_all | |
| else: | |
| selected_sequences = random.sample(sequences_all, max_num_sequences_per_object) | |
| selected_sequences_numbers_dict = {} | |
| for seq_name in tqdm(selected_sequences, leave=False): | |
| scene_dir = osp.join(category_dir, seq_name) | |
| scene_output_dir = osp.join(category_output_dir, seq_name) | |
| with open(osp.join(scene_dir, 'metadata'), 'r') as f: | |
| metadata = json.load(f) | |
| K = np.array(metadata["K"]).reshape(3, 3).T | |
| fx, fy, cx, cy = K[0, 0], K[1, 1], K[0, 2], K[1, 2] | |
| w, h = metadata["w"], metadata["h"] | |
| camera_intrinsics = np.array( | |
| [[fx, 0, cx], | |
| [0, fy, cy], | |
| [0, 0, 1]] | |
| ) | |
| camera_to_world_path = os.path.join(scene_dir, 'cam_poses.txt') | |
| camera_to_world_content = np.genfromtxt(camera_to_world_path) | |
| camera_to_world = camera_to_world_content[:, 1:].reshape(-1, 4, 4) | |
| frame_idx = camera_to_world_content[:, 0] | |
| num_frames = frame_idx.shape[0] | |
| assert num_frames >= output_num_frames | |
| assert np.all(frame_idx == np.arange(num_frames)) | |
| # selected_sequences_numbers_dict[seq_name] = num_frames | |
| selected_frames = np.round(np.linspace(0, num_frames - 1, output_num_frames)).astype(int).tolist() | |
| selected_sequences_numbers_dict[seq_name] = selected_frames | |
| for frame_id in tqdm(selected_frames): | |
| depth_path = os.path.join(scene_dir, 'depth', f'{frame_id:0>5d}.png') | |
| masks_path = os.path.join(scene_dir, 'masks', f'{frame_id:0>5d}.png') | |
| rgb_path = os.path.join(scene_dir, 'rgb', f'{frame_id:0>5d}.png') | |
| input_rgb_image = PIL.Image.open(rgb_path).convert('RGB') | |
| input_mask = plt.imread(masks_path) | |
| input_depthmap = imread_cv2(depth_path, cv2.IMREAD_UNCHANGED).astype(np.float64) | |
| depth_mask = np.stack((input_depthmap, input_mask), axis=-1) | |
| H, W = input_depthmap.shape | |
| min_margin_x = min(cx, W - cx) | |
| min_margin_y = min(cy, H - cy) | |
| # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) | |
| l, t = int(cx - min_margin_x), int(cy - min_margin_y) | |
| r, b = int(cx + min_margin_x), int(cy + min_margin_y) | |
| crop_bbox = (l, t, r, b) | |
| input_rgb_image, depth_mask, input_camera_intrinsics = cropping.crop_image_depthmap( | |
| input_rgb_image, depth_mask, camera_intrinsics, crop_bbox) | |
| # try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384 | |
| scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8 | |
| output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) | |
| if max(output_resolution) < img_size: | |
| # let's put the max dimension to img_size | |
| scale_final = (img_size / max(H, W)) + 1e-8 | |
| output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) | |
| input_rgb_image, depth_mask, input_camera_intrinsics = cropping.rescale_image_depthmap( | |
| input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution) | |
| input_depthmap = depth_mask[:, :, 0] | |
| input_mask = depth_mask[:, :, 1] | |
| camera_pose = camera_to_world[frame_id] | |
| # save crop images and depth, metadata | |
| save_img_path = os.path.join(scene_output_dir, 'rgb', f'{frame_id:0>5d}.jpg') | |
| save_depth_path = os.path.join(scene_output_dir, 'depth', f'{frame_id:0>5d}.png') | |
| save_mask_path = os.path.join(scene_output_dir, 'masks', f'{frame_id:0>5d}.png') | |
| os.makedirs(os.path.split(save_img_path)[0], exist_ok=True) | |
| os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True) | |
| os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True) | |
| input_rgb_image.save(save_img_path) | |
| cv2.imwrite(save_depth_path, input_depthmap.astype(np.uint16)) | |
| cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8)) | |
| save_meta_path = os.path.join(scene_output_dir, 'metadata', f'{frame_id:0>5d}.npz') | |
| os.makedirs(os.path.split(save_meta_path)[0], exist_ok=True) | |
| np.savez(save_meta_path, camera_intrinsics=input_camera_intrinsics, | |
| camera_pose=camera_pose) | |
| return selected_sequences_numbers_dict | |
| if __name__ == "__main__": | |
| parser = get_parser() | |
| args = parser.parse_args() | |
| assert args.wildrgbd_dir != args.output_dir | |
| categories = sorted([ | |
| dirname for dirname in os.listdir(args.wildrgbd_dir) | |
| if os.path.isdir(os.path.join(args.wildrgbd_dir, dirname, 'scenes')) | |
| ]) | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| splits_num_sequences_per_object = [args.train_num_sequences_per_object, args.test_num_sequences_per_object] | |
| for split, num_sequences_per_object in zip(['train', 'test'], splits_num_sequences_per_object): | |
| selected_sequences_path = os.path.join(args.output_dir, f'selected_seqs_{split}.json') | |
| if os.path.isfile(selected_sequences_path): | |
| continue | |
| all_selected_sequences = {} | |
| for category in categories: | |
| category_output_dir = osp.join(args.output_dir, category) | |
| os.makedirs(category_output_dir, exist_ok=True) | |
| category_selected_sequences_path = os.path.join(category_output_dir, f'selected_seqs_{split}.json') | |
| if os.path.isfile(category_selected_sequences_path): | |
| with open(category_selected_sequences_path, 'r') as fid: | |
| category_selected_sequences = json.load(fid) | |
| else: | |
| print(f"Processing {split} - category = {category}") | |
| category_selected_sequences = prepare_sequences( | |
| category=category, | |
| wildrgbd_dir=args.wildrgbd_dir, | |
| output_dir=args.output_dir, | |
| img_size=args.img_size, | |
| split=split, | |
| max_num_sequences_per_object=num_sequences_per_object, | |
| output_num_frames=args.num_frames, | |
| seed=args.seed + int("category".encode('ascii').hex(), 16), | |
| ) | |
| with open(category_selected_sequences_path, 'w') as file: | |
| json.dump(category_selected_sequences, file) | |
| all_selected_sequences[category] = category_selected_sequences | |
| with open(selected_sequences_path, 'w') as file: | |
| json.dump(all_selected_sequences, file) | |