Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- hg_app.py +1 -1
- hg_app_bak.py +404 -0
hg_app.py
CHANGED
|
@@ -413,4 +413,4 @@ if __name__ == '__main__':
|
|
| 413 |
|
| 414 |
demo = build_app()
|
| 415 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 416 |
-
uvicorn.run(app)
|
|
|
|
| 413 |
|
| 414 |
demo = build_app()
|
| 415 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 416 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
hg_app_bak.py
ADDED
|
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pip install gradio==3.39.0
|
| 2 |
+
import os
|
| 3 |
+
import subprocess
|
| 4 |
+
def install_cuda_toolkit():
|
| 5 |
+
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
|
| 6 |
+
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
|
| 7 |
+
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 8 |
+
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
| 9 |
+
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
|
| 10 |
+
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
|
| 11 |
+
|
| 12 |
+
os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 13 |
+
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
|
| 14 |
+
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
|
| 15 |
+
os.environ["CUDA_HOME"],
|
| 16 |
+
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
|
| 17 |
+
)
|
| 18 |
+
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
|
| 19 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 20 |
+
|
| 21 |
+
install_cuda_toolkit()
|
| 22 |
+
os.system("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh")
|
| 23 |
+
os.system("cd /home/user/app/hy3dgen/texgen/custom_rasterizer && pip install .")
|
| 24 |
+
# os.system("cd /home/user/app/hy3dgen/texgen/custom_rasterizer && CUDA_HOME=/usr/local/cuda FORCE_CUDA=1 TORCH_CUDA_ARCH_LIST='8.0;8.6;8.9;9.0' python setup.py install")
|
| 25 |
+
|
| 26 |
+
import shutil
|
| 27 |
+
import time
|
| 28 |
+
from glob import glob
|
| 29 |
+
import gradio as gr
|
| 30 |
+
import torch
|
| 31 |
+
from gradio_litmodel3d import LitModel3D
|
| 32 |
+
|
| 33 |
+
import spaces
|
| 34 |
+
|
| 35 |
+
def get_example_img_list():
|
| 36 |
+
print('Loading example img list ...')
|
| 37 |
+
return sorted(glob('./assets/example_images/*.png'))
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_example_txt_list():
|
| 41 |
+
print('Loading example txt list ...')
|
| 42 |
+
txt_list = list()
|
| 43 |
+
for line in open('./assets/example_prompts.txt'):
|
| 44 |
+
txt_list.append(line.strip())
|
| 45 |
+
return txt_list
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def gen_save_folder(max_size=60):
|
| 49 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 50 |
+
exists = set(int(_) for _ in os.listdir(SAVE_DIR) if not _.startswith("."))
|
| 51 |
+
cur_id = min(set(range(max_size)) - exists) if len(exists) < max_size else -1
|
| 52 |
+
if os.path.exists(f"{SAVE_DIR}/{(cur_id + 1) % max_size}"):
|
| 53 |
+
shutil.rmtree(f"{SAVE_DIR}/{(cur_id + 1) % max_size}")
|
| 54 |
+
print(f"remove {SAVE_DIR}/{(cur_id + 1) % max_size} success !!!")
|
| 55 |
+
save_folder = f"{SAVE_DIR}/{max(0, cur_id)}"
|
| 56 |
+
os.makedirs(save_folder, exist_ok=True)
|
| 57 |
+
print(f"mkdir {save_folder} suceess !!!")
|
| 58 |
+
return save_folder
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def export_mesh(mesh, save_folder, textured=False):
|
| 62 |
+
if textured:
|
| 63 |
+
path = os.path.join(save_folder, f'textured_mesh.glb')
|
| 64 |
+
else:
|
| 65 |
+
path = os.path.join(save_folder, f'white_mesh.glb')
|
| 66 |
+
mesh.export(path, include_normals=textured)
|
| 67 |
+
return path
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def build_model_viewer_html(save_folder, height=660, width=790, textured=False):
|
| 71 |
+
if textured:
|
| 72 |
+
related_path = f"./textured_mesh.glb"
|
| 73 |
+
template_name = './assets/modelviewer-textured-template.html'
|
| 74 |
+
output_html_path = os.path.join(save_folder, f'textured_mesh.html')
|
| 75 |
+
else:
|
| 76 |
+
related_path = f"./white_mesh.glb"
|
| 77 |
+
template_name = './assets/modelviewer-template.html'
|
| 78 |
+
output_html_path = os.path.join(save_folder, f'white_mesh.html')
|
| 79 |
+
|
| 80 |
+
with open(os.path.join(CURRENT_DIR, template_name), 'r') as f:
|
| 81 |
+
template_html = f.read()
|
| 82 |
+
obj_html = f"""
|
| 83 |
+
<div class="column is-mobile is-centered">
|
| 84 |
+
<model-viewer style="height: {height - 10}px; width: {width}px;" rotation-per-second="10deg" id="modelViewer"
|
| 85 |
+
src="{related_path}/" disable-tap
|
| 86 |
+
environment-image="neutral" auto-rotate camera-target="0m 0m 0m" orientation="0deg 0deg 170deg" shadow-intensity=".9"
|
| 87 |
+
ar auto-rotate camera-controls>
|
| 88 |
+
</model-viewer>
|
| 89 |
+
</div>
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
with open(output_html_path, 'w') as f:
|
| 93 |
+
f.write(template_html.replace('<model-viewer>', obj_html))
|
| 94 |
+
|
| 95 |
+
iframe_tag = f'<iframe src="file/{output_html_path}" height="{height}" width="100%" frameborder="0"></iframe>'
|
| 96 |
+
print(f'Find html {output_html_path}, {os.path.exists(output_html_path)}')
|
| 97 |
+
|
| 98 |
+
return f"""
|
| 99 |
+
<div style='height: {height}; width: 100%;'>
|
| 100 |
+
{iframe_tag}
|
| 101 |
+
</div>
|
| 102 |
+
"""
|
| 103 |
+
|
| 104 |
+
@spaces.GPU(duration=60)
|
| 105 |
+
def _gen_shape(
|
| 106 |
+
caption,
|
| 107 |
+
image,
|
| 108 |
+
steps=50,
|
| 109 |
+
guidance_scale=7.5,
|
| 110 |
+
seed=1234,
|
| 111 |
+
octree_resolution=256,
|
| 112 |
+
check_box_rembg=False,
|
| 113 |
+
):
|
| 114 |
+
if caption: print('prompt is', caption)
|
| 115 |
+
save_folder = gen_save_folder()
|
| 116 |
+
stats = {}
|
| 117 |
+
time_meta = {}
|
| 118 |
+
start_time_0 = time.time()
|
| 119 |
+
|
| 120 |
+
image_path = ''
|
| 121 |
+
if image is None:
|
| 122 |
+
start_time = time.time()
|
| 123 |
+
image = t2i_worker(caption)
|
| 124 |
+
time_meta['text2image'] = time.time() - start_time
|
| 125 |
+
|
| 126 |
+
image.save(os.path.join(save_folder, 'input.png'))
|
| 127 |
+
|
| 128 |
+
print(image.mode)
|
| 129 |
+
if check_box_rembg or image.mode == "RGB":
|
| 130 |
+
start_time = time.time()
|
| 131 |
+
image = rmbg_worker(image.convert('RGB'))
|
| 132 |
+
time_meta['rembg'] = time.time() - start_time
|
| 133 |
+
|
| 134 |
+
image.save(os.path.join(save_folder, 'rembg.png'))
|
| 135 |
+
|
| 136 |
+
# image to white model
|
| 137 |
+
start_time = time.time()
|
| 138 |
+
|
| 139 |
+
generator = torch.Generator()
|
| 140 |
+
generator = generator.manual_seed(int(seed))
|
| 141 |
+
mesh = i23d_worker(
|
| 142 |
+
image=image,
|
| 143 |
+
num_inference_steps=steps,
|
| 144 |
+
guidance_scale=guidance_scale,
|
| 145 |
+
generator=generator,
|
| 146 |
+
octree_resolution=octree_resolution
|
| 147 |
+
)[0]
|
| 148 |
+
|
| 149 |
+
mesh = FloaterRemover()(mesh)
|
| 150 |
+
mesh = DegenerateFaceRemover()(mesh)
|
| 151 |
+
mesh = FaceReducer()(mesh)
|
| 152 |
+
|
| 153 |
+
stats['number_of_faces'] = mesh.faces.shape[0]
|
| 154 |
+
stats['number_of_vertices'] = mesh.vertices.shape[0]
|
| 155 |
+
|
| 156 |
+
time_meta['image_to_textured_3d'] = {'total': time.time() - start_time}
|
| 157 |
+
time_meta['total'] = time.time() - start_time_0
|
| 158 |
+
stats['time'] = time_meta
|
| 159 |
+
return mesh, save_folder
|
| 160 |
+
|
| 161 |
+
@spaces.GPU(duration=80)
|
| 162 |
+
def generation_all(
|
| 163 |
+
caption,
|
| 164 |
+
image,
|
| 165 |
+
steps=50,
|
| 166 |
+
guidance_scale=7.5,
|
| 167 |
+
seed=1234,
|
| 168 |
+
octree_resolution=256,
|
| 169 |
+
check_box_rembg=False
|
| 170 |
+
):
|
| 171 |
+
mesh, save_folder = _gen_shape(
|
| 172 |
+
caption,
|
| 173 |
+
image,
|
| 174 |
+
steps=steps,
|
| 175 |
+
guidance_scale=guidance_scale,
|
| 176 |
+
seed=seed,
|
| 177 |
+
octree_resolution=octree_resolution,
|
| 178 |
+
check_box_rembg=check_box_rembg
|
| 179 |
+
)
|
| 180 |
+
path = export_mesh(mesh, save_folder, textured=False)
|
| 181 |
+
model_viewer_html = build_model_viewer_html(save_folder, height=596, width=700)
|
| 182 |
+
|
| 183 |
+
textured_mesh = texgen_worker(mesh, image)
|
| 184 |
+
path_textured = export_mesh(textured_mesh, save_folder, textured=True)
|
| 185 |
+
model_viewer_html_textured = build_model_viewer_html(save_folder, height=596, width=700, textured=True)
|
| 186 |
+
|
| 187 |
+
return (
|
| 188 |
+
gr.update(value=path, visible=True),
|
| 189 |
+
gr.update(value=path_textured, visible=True),
|
| 190 |
+
gr.update(value=path, visible=True),
|
| 191 |
+
gr.update(value=path_textured, visible=True),
|
| 192 |
+
# model_viewer_html,
|
| 193 |
+
# model_viewer_html_textured,
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
@spaces.GPU(duration=30)
|
| 197 |
+
def shape_generation(
|
| 198 |
+
caption,
|
| 199 |
+
image,
|
| 200 |
+
steps=50,
|
| 201 |
+
guidance_scale=7.5,
|
| 202 |
+
seed=1234,
|
| 203 |
+
octree_resolution=256,
|
| 204 |
+
check_box_rembg=False,
|
| 205 |
+
):
|
| 206 |
+
mesh, save_folder = _gen_shape(
|
| 207 |
+
caption,
|
| 208 |
+
image,
|
| 209 |
+
steps=steps,
|
| 210 |
+
guidance_scale=guidance_scale,
|
| 211 |
+
seed=seed,
|
| 212 |
+
octree_resolution=octree_resolution,
|
| 213 |
+
check_box_rembg=check_box_rembg
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
path = export_mesh(mesh, save_folder, textured=False)
|
| 217 |
+
model_viewer_html = build_model_viewer_html(save_folder, height=596, width=700)
|
| 218 |
+
|
| 219 |
+
return (
|
| 220 |
+
gr.update(value=path, visible=True),
|
| 221 |
+
gr.update(value=path, visible=True),
|
| 222 |
+
# model_viewer_html,
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def build_app():
|
| 227 |
+
title_html = """
|
| 228 |
+
<div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 20px">
|
| 229 |
+
|
| 230 |
+
Hunyuan3D-2: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation
|
| 231 |
+
</div>
|
| 232 |
+
<div align="center">
|
| 233 |
+
Tencent Hunyuan3D Team
|
| 234 |
+
</div>
|
| 235 |
+
<div align="center">
|
| 236 |
+
<a href="https://github.com/tencent/Hunyuan3D-1">Github Page</a>  
|
| 237 |
+
<a href="http://3d-models.hunyuan.tencent.com">Homepage</a>  
|
| 238 |
+
<a href="https://arxiv.org/pdf/2411.02293">Technical Report</a>  
|
| 239 |
+
<a href="https://huggingface.co/Tencent/Hunyuan3D-2"> Models</a>  
|
| 240 |
+
</div>
|
| 241 |
+
"""
|
| 242 |
+
css = """
|
| 243 |
+
.json-output {
|
| 244 |
+
height: 578px;
|
| 245 |
+
}
|
| 246 |
+
.json-output .json-holder {
|
| 247 |
+
height: 538px;
|
| 248 |
+
overflow-y: scroll;
|
| 249 |
+
}
|
| 250 |
+
"""
|
| 251 |
+
|
| 252 |
+
with gr.Blocks(theme=gr.themes.Base(), css=css, title='Hunyuan-3D-2.0') as demo:
|
| 253 |
+
# if not gr.__version__.startswith('4'): gr.HTML(title_html)
|
| 254 |
+
gr.HTML(title_html)
|
| 255 |
+
|
| 256 |
+
with gr.Row():
|
| 257 |
+
with gr.Column(scale=2):
|
| 258 |
+
with gr.Tabs() as tabs_prompt:
|
| 259 |
+
with gr.Tab('Image Prompt', id='tab_img_prompt') as tab_ip:
|
| 260 |
+
image = gr.Image(label='Image', type='pil', image_mode='RGBA', height=290)
|
| 261 |
+
with gr.Row():
|
| 262 |
+
check_box_rembg = gr.Checkbox(value=True, label='Remove Background')
|
| 263 |
+
|
| 264 |
+
with gr.Tab('Text Prompt', id='tab_txt_prompt') as tab_tp:
|
| 265 |
+
caption = gr.Textbox(label='Text Prompt',
|
| 266 |
+
placeholder='HunyuanDiT will be used to generate image.',
|
| 267 |
+
info='Example: A 3D model of a cute cat, white background')
|
| 268 |
+
|
| 269 |
+
with gr.Accordion('Advanced Options', open=False):
|
| 270 |
+
num_steps = gr.Slider(maximum=50, minimum=20, value=30, step=1, label='Inference Steps')
|
| 271 |
+
octree_resolution = gr.Dropdown([256, 384, 512], value=256, label='Octree Resolution')
|
| 272 |
+
cfg_scale = gr.Number(value=5.5, label='Guidance Scale')
|
| 273 |
+
seed = gr.Slider(maximum=1e7, minimum=0, value=1234, label='Seed')
|
| 274 |
+
|
| 275 |
+
with gr.Group():
|
| 276 |
+
btn = gr.Button(value='Generate Shape Only', variant='primary')
|
| 277 |
+
btn_all = gr.Button(value='Generate Shape and Texture', variant='primary')
|
| 278 |
+
|
| 279 |
+
with gr.Group():
|
| 280 |
+
file_out = gr.File(label="File", visible=False)
|
| 281 |
+
file_out2 = gr.File(label="File", visible=False)
|
| 282 |
+
|
| 283 |
+
with gr.Column(scale=5):
|
| 284 |
+
with gr.Tabs():
|
| 285 |
+
with gr.Tab('Generated Mesh') as mesh1:
|
| 286 |
+
mesh_output1 = LitModel3D(
|
| 287 |
+
label="3D Model1",
|
| 288 |
+
exposure=10.0,
|
| 289 |
+
height=600,
|
| 290 |
+
visible=True,
|
| 291 |
+
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 292 |
+
tonemapping="aces",
|
| 293 |
+
contrast=1.0,
|
| 294 |
+
scale=1.0,
|
| 295 |
+
)
|
| 296 |
+
# html_output1 = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
|
| 297 |
+
with gr.Tab('Generated Textured Mesh') as mesh2:
|
| 298 |
+
# html_output2 = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
|
| 299 |
+
mesh_output2 = LitModel3D(
|
| 300 |
+
label="3D Model2",
|
| 301 |
+
exposure=10.0,
|
| 302 |
+
height=600,
|
| 303 |
+
visible=True,
|
| 304 |
+
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 305 |
+
tonemapping="aces",
|
| 306 |
+
contrast=1.0,
|
| 307 |
+
scale=1.0,
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
with gr.Column(scale=2):
|
| 311 |
+
with gr.Tabs() as gallery:
|
| 312 |
+
with gr.Tab('Image to 3D Gallery', id='tab_img_gallery') as tab_gi:
|
| 313 |
+
with gr.Row():
|
| 314 |
+
gr.Examples(examples=example_is, inputs=[image],
|
| 315 |
+
label="Image Prompts", examples_per_page=18)
|
| 316 |
+
|
| 317 |
+
with gr.Tab('Text to 3D Gallery', id='tab_txt_gallery') as tab_gt:
|
| 318 |
+
with gr.Row():
|
| 319 |
+
gr.Examples(examples=example_ts, inputs=[caption],
|
| 320 |
+
label="Text Prompts", examples_per_page=18)
|
| 321 |
+
|
| 322 |
+
tab_gi.select(fn=lambda: gr.update(selected='tab_img_prompt'), outputs=tabs_prompt)
|
| 323 |
+
tab_gt.select(fn=lambda: gr.update(selected='tab_txt_prompt'), outputs=tabs_prompt)
|
| 324 |
+
|
| 325 |
+
btn.click(
|
| 326 |
+
shape_generation,
|
| 327 |
+
inputs=[
|
| 328 |
+
caption,
|
| 329 |
+
image,
|
| 330 |
+
num_steps,
|
| 331 |
+
cfg_scale,
|
| 332 |
+
seed,
|
| 333 |
+
octree_resolution,
|
| 334 |
+
check_box_rembg,
|
| 335 |
+
],
|
| 336 |
+
# outputs=[file_out, html_output1]
|
| 337 |
+
outputs=[file_out, mesh_output1]
|
| 338 |
+
).then(
|
| 339 |
+
lambda: gr.update(visible=True),
|
| 340 |
+
outputs=[file_out],
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
btn_all.click(
|
| 344 |
+
generation_all,
|
| 345 |
+
inputs=[
|
| 346 |
+
caption,
|
| 347 |
+
image,
|
| 348 |
+
num_steps,
|
| 349 |
+
cfg_scale,
|
| 350 |
+
seed,
|
| 351 |
+
octree_resolution,
|
| 352 |
+
check_box_rembg,
|
| 353 |
+
],
|
| 354 |
+
# outputs=[file_out, file_out2, html_output1, html_output2]
|
| 355 |
+
outputs=[file_out, file_out2, mesh_output1, mesh_output2]
|
| 356 |
+
).then(
|
| 357 |
+
lambda: (gr.update(visible=True), gr.update(visible=True)),
|
| 358 |
+
outputs=[file_out, file_out2],
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
return demo
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
if __name__ == '__main__':
|
| 365 |
+
import argparse
|
| 366 |
+
|
| 367 |
+
parser = argparse.ArgumentParser()
|
| 368 |
+
parser.add_argument('--port', type=int, default=8080)
|
| 369 |
+
parser.add_argument('--cache-path', type=str, default='./gradio_cache')
|
| 370 |
+
args = parser.parse_args()
|
| 371 |
+
|
| 372 |
+
SAVE_DIR = args.cache_path
|
| 373 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 374 |
+
|
| 375 |
+
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 376 |
+
|
| 377 |
+
HTML_OUTPUT_PLACEHOLDER = """
|
| 378 |
+
<div style='height: 596px; width: 100%; border-radius: 8px; border-color: #e5e7eb; order-style: solid; border-width: 1px;'></div>
|
| 379 |
+
"""
|
| 380 |
+
|
| 381 |
+
INPUT_MESH_HTML = """
|
| 382 |
+
<div style='height: 490px; width: 100%; border-radius: 8px;
|
| 383 |
+
border-color: #e5e7eb; order-style: solid; border-width: 1px;'>
|
| 384 |
+
</div>
|
| 385 |
+
"""
|
| 386 |
+
example_is = get_example_img_list()
|
| 387 |
+
example_ts = get_example_txt_list()
|
| 388 |
+
|
| 389 |
+
from hy3dgen.text2image import HunyuanDiTPipeline
|
| 390 |
+
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, \
|
| 391 |
+
Hunyuan3DDiTFlowMatchingPipeline
|
| 392 |
+
from hy3dgen.texgen import Hunyuan3DPaintPipeline
|
| 393 |
+
from hy3dgen.rembg import BackgroundRemover
|
| 394 |
+
|
| 395 |
+
rmbg_worker = BackgroundRemover()
|
| 396 |
+
t2i_worker = HunyuanDiTPipeline()
|
| 397 |
+
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained('tencent/Hunyuan3D-2')
|
| 398 |
+
texgen_worker = Hunyuan3DPaintPipeline.from_pretrained('tencent/Hunyuan3D-2')
|
| 399 |
+
floater_remove_worker = FloaterRemover()
|
| 400 |
+
degenerate_face_remove_worker = DegenerateFaceRemover()
|
| 401 |
+
face_reduce_worker = FaceReducer()
|
| 402 |
+
|
| 403 |
+
demo = build_app()
|
| 404 |
+
demo.queue().launch()
|