Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,074 Bytes
0ca05b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
# inspired by https://github.com/DepthAnything/Depth-Anything-V2
from typing import List, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from src.models.utils.grid import create_uv_grid, position_grid_to_embed
class DPTHead(nn.Module):
"""
# DPT Head for dense prediction tasks.
# This module implements the DPT (Dense Prediction Transformer) head as proposed in
# "Vision Transformers for Dense Prediction" (https://arxiv.org/abs/2103.13413).
# It takes features from a vision transformer backbone and generates dense (per-pixel) predictions
# by fusing multi-scale features through a series of projection, upsampling, and refinement blocks.
# Args:
# dim_in (int): Number of input feature channels.
# patch_size (int, optional): Patch size used by the backbone, default is 14.
# output_dim (int, optional): Number of output channels, default is 4.
# activation (str, optional): Activation function type for the output head, default is "inv_log".
# conf_activation (str, optional): Activation function type for the confidence/output uncertainty head, default is "expp1".
# features (int, optional): Number of channels used in intermediate feature representations, default is 256.
# out_channels (List[int], optional): Number of channels for each intermediate multi-scale feature.
# intermediate_layer_idx (List[int], optional): Indices specifying which backbone layers to use for multi-scale fusion.
# pos_embed (bool, optional): Whether to add positional encoding to the features, default is True.
# feature_only (bool, optional): If True, only return intermediate features (skip final prediction and activations).
# down_ratio (int, optional): Downsampling ratio of the output predictions, default is 1 (no downsampling).
"""
def __init__(
self,
dim_in: int,
patch_size: int = 14,
output_dim: int = 4,
activation: str = "inv_log+expp1",
features: int = 256,
out_channels: List[int] = [256, 512, 1024, 1024],
pos_embed: bool = True,
down_ratio: int = 1,
is_gsdpt: bool = False
) -> None:
super(DPTHead, self).__init__()
self.patch_size = patch_size
self.activation = activation
self.pos_embed = pos_embed
self.down_ratio = down_ratio
self.is_gsdpt = is_gsdpt
self.norm = nn.LayerNorm(dim_in)
# Projection layers for each output channel from tokens.
self.projects = nn.ModuleList([nn.Conv2d(in_channels=dim_in, out_channels=oc, kernel_size=1, stride=1, padding=0) for oc in out_channels])
# Resize layers for upsampling feature maps.
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
),
]
)
self.scratch = _make_scratch(out_channels, features, expand=False)
# Attach additional modules to scratch.
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features)
self.scratch.refinenet2 = _make_fusion_block(features)
self.scratch.refinenet3 = _make_fusion_block(features)
self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False)
head_features_1 = features
head_features_2 = 32
if self.is_gsdpt:
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
conv2_in_channels = head_features_1 // 2
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(conv2_in_channels, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0),
)
self.input_merger = nn.Sequential(
nn.Conv2d(3, conv2_in_channels, 7, 1, 3),
nn.ReLU()
)
else:
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
conv2_in_channels = head_features_1 // 2
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(conv2_in_channels, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0),
)
def forward(
self,
token_list: List[torch.Tensor],
images: torch.Tensor,
patch_start_idx: int,
frames_chunk_size: int = 8,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Forward pass with optional frame chunking for memory efficiency.
Args:
token_list: List of token tensors from transformer, each [B, N, C]
images: Input images [B, S, 3, H, W], range [0, 1]
patch_start_idx: Starting index of patch tokens
frames_chunk_size: Number of frames per chunk. If None or >= S, process all at once
gradient_checkpoint: Whether to use gradient checkpointing
Returns:
For is_gsdpt: predictions [B, S, ...]
Otherwise: (predictions, confidence), [B, S, X, H, W] and [B, S, 1, H, W]
"""
B, S, _, H, W = images.shape
# Process all frames together if chunk size not specified or large enough
if frames_chunk_size is None or frames_chunk_size >= S:
return self._forward_impl(token_list, images, patch_start_idx)
assert frames_chunk_size > 0
# Process frames in chunks
preds_chunks = []
conf_chunks = []
gs_chunks = []
for frame_start in range(0, S, frames_chunk_size):
frame_end = min(frame_start + frames_chunk_size, S)
if self.is_gsdpt:
gs, preds, conf = self._forward_impl(
token_list, images, patch_start_idx, frame_start, frame_end
)
gs_chunks.append(gs)
preds_chunks.append(preds)
conf_chunks.append(conf)
else:
preds, conf = self._forward_impl(
token_list, images, patch_start_idx, frame_start, frame_end
)
preds_chunks.append(preds)
conf_chunks.append(conf)
# Concatenate chunks along frame dimension
if self.is_gsdpt:
return torch.cat(gs_chunks, dim=1), torch.cat(preds_chunks, dim=1), torch.cat(conf_chunks, dim=1),
else:
return torch.cat(preds_chunks, dim=1), torch.cat(conf_chunks, dim=1)
def _forward_impl(
self,
token_list: List[torch.Tensor],
images: torch.Tensor,
patch_start_idx: int,
frame_start: int = None,
frame_end: int = None,
) -> torch.Tensor:
"""
Core forward implementation for DPT head.
Args:
token_list: List of transformer tokens from each layer, [B, S, N, C]
images: Input images [B, S, 3, H, W]
patch_start_idx: Starting index of patch tokens
frame_start: Start index for frame chunking (optional)
frame_end: End index for frame chunking (optional)
Returns:
If is_gsdpt: (features, preds, conf)
Else: (preds, conf)
"""
# Slice frames if chunking
if frame_start is not None and frame_end is not None:
images = images[:, frame_start:frame_end].contiguous()
B, S, _, H, W = images.shape
ph = H // self.patch_size # patch height
pw = W // self.patch_size # patch width
# Extract and project multi-level features
feats = []
for proj, resize, tokens in zip(self.projects, self.resize_layers, token_list):
# Extract patch tokens
patch_tokens = tokens[:, :, patch_start_idx:]
if frame_start is not None and frame_end is not None:
patch_tokens = patch_tokens[:, frame_start:frame_end]
# Reshape to [B*S, N_patches, C]
patch_tokens = patch_tokens.reshape(B * S, -1, patch_tokens.shape[-1])
patch_tokens = self.norm(patch_tokens)
# Convert to 2D feature map [B*S, C, ph, pw]
feat = patch_tokens.permute(0, 2, 1).reshape(B * S, patch_tokens.shape[-1], ph, pw)
feat = proj(feat)
if self.pos_embed:
feat = self._apply_pos_embed(feat, W, H)
feat = resize(feat)
feats.append(feat)
# Fuse multi-level features
fused = self.scratch_forward(feats)
fused = custom_interpolate(
fused,
size=(
int(ph * self.patch_size / self.down_ratio),
int(pw * self.patch_size / self.down_ratio)
),
mode="bilinear",
align_corners=True,
)
# Apply positional embedding after upsampling
if self.pos_embed:
fused = self._apply_pos_embed(fused, W, H)
# Generate predictions and confidence
if self.is_gsdpt:
# GSDPT: output features, predictions, and confidence
out = self.scratch.output_conv2(fused)
preds, conf = self.activate_head(out, activation=self.activation)
preds = preds.reshape(B, S, *preds.shape[1:])
conf = conf.reshape(B, S, *conf.shape[1:])
# Merge direct image features
img_flat = images.reshape(B * S, -1, H, W)
img_feat = self.input_merger(img_flat)
fused = fused + img_feat
fused = fused.reshape(B, S, *fused.shape[1:])
return fused, preds, conf
else:
# Standard: output predictions and confidence
out = self.scratch.output_conv2(fused)
preds, conf = self.activate_head(out, activation=self.activation)
preds = preds.reshape(B, S, *preds.shape[1:])
conf = conf.reshape(B, S, *conf.shape[1:])
return preds, conf
def _apply_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor:
"""
Apply positional embedding to tensor x.
"""
patch_w = x.shape[-1]
patch_h = x.shape[-2]
pos_embed = create_uv_grid(patch_w, patch_h, aspect_ratio=W / H, dtype=x.dtype, device=x.device)
pos_embed = position_grid_to_embed(pos_embed, x.shape[1])
pos_embed = pos_embed * ratio
pos_embed = pos_embed.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1)
return x + pos_embed
def scratch_forward(self, features: List[torch.Tensor]) -> torch.Tensor:
"""
Forward pass through the fusion blocks.
Args:
features (List[Tensor]): List of feature maps from different layers.
Returns:
Tensor: Fused feature map.
"""
layer_1, layer_2, layer_3, layer_4 = features
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
out = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
del layer_4_rn, layer_4
out = self.scratch.refinenet3(out, layer_3_rn, size=layer_2_rn.shape[2:])
del layer_3_rn, layer_3
out = self.scratch.refinenet2(out, layer_2_rn, size=layer_1_rn.shape[2:])
del layer_2_rn, layer_2
out = self.scratch.refinenet1(out, layer_1_rn)
del layer_1_rn, layer_1
out = self.scratch.output_conv1(out)
return out
def activate_head(self, out_head: torch.Tensor, activation: str = "inv_log+expp1") -> Tuple[torch.Tensor, torch.Tensor]:
"""
Process network output to extract attribute (e.g. points, depth, etc.) and confidence values.
Args:
out_head: Network output tensor (B, C, H, W)
activation: Activation type for processing (e.g., "inv_log+expp1")
Returns:
Tuple of (attribute tensor, confidence tensor)
"""
# Parse activation string
act_attr, act_conf = (activation.split("+") if "+" in activation else (activation, "expp1"))
# (B,C,H,W) -> (B,H,W,C)
feat = out_head.permute(0, 2, 3, 1)
attr, conf = feat[..., :-1], feat[..., -1]
# Map point activations to lambdas for clarity and conciseness
attr_activations = {
"norm_exp": lambda x: (x / x.norm(dim=-1, keepdim=True).clamp(min=1e-8)) * torch.expm1(x.norm(dim=-1, keepdim=True)),
"norm": lambda x: x / x.norm(dim=-1, keepdim=True),
"exp": torch.exp,
"relu": F.relu,
"inv_log": self._apply_inverse_log_transform,
"xy_inv_log": lambda x: torch.cat([
x[..., :2] * self._apply_inverse_log_transform(x[..., 2:]),
self._apply_inverse_log_transform(x[..., 2:])
], dim=-1),
"sigmoid": torch.sigmoid,
"linear": lambda x: x
}
if act_attr not in attr_activations:
raise ValueError(f"Unknown attribute activation: {act_attr}")
attr_out = attr_activations[act_attr](attr)
# Confidence activation mapping
conf_activations = {
"expp1": lambda c: 1 + c.exp(),
"expp0": torch.exp,
"sigmoid": torch.sigmoid
}
if act_conf not in conf_activations:
raise ValueError(f"Unknown confidence activation: {act_conf}")
conf_out = conf_activations[act_conf](conf)
return attr_out, conf_out
def _apply_inverse_log_transform(self, input_tensor: torch.Tensor) -> torch.Tensor:
"""
Apply inverse logarithm transform: sign(y) * (exp(|y|) - 1)
Args:
input_tensor: Input tensor
Returns:
Transformed tensor
"""
return torch.sign(input_tensor) * (torch.expm1(torch.abs(input_tensor)))
################################################################################
# DPT Modules
################################################################################
def _make_fusion_block(features: int, size: int = None, has_residual: bool = True, groups: int = 1) -> nn.Module:
return FeatureFusionBlock(
features,
nn.ReLU(inplace=True),
deconv=False,
bn=False,
expand=False,
align_corners=True,
size=size,
has_residual=has_residual,
groups=groups,
)
def _make_scratch(in_shape: List[int], out_shape: int, groups: int = 1, expand: bool = False) -> nn.Module:
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module with skip connection."""
def __init__(self, features, activation, bn, groups=1):
"""Initialize ResidualConvUnit.
Args:
features (int): Number of input/output feature channels
activation: Activation function to use
bn (bool): Whether to use batch normalization (currently unused)
groups (int): Number of groups for grouped convolution
"""
super().__init__()
self.bn = bn
self.groups = groups
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.norm1 = None
self.norm2 = None
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass with residual connection.
Args:
x (tensor): Input tensor of shape (B, C, H, W)
Returns:
tensor: Output tensor of shape (B, C, H, W) with residual added
"""
out = self.activation(x)
out = self.conv1(out)
if self.norm1 is not None:
out = self.norm1(out)
out = self.activation(out)
out = self.conv2(out)
if self.norm2 is not None:
out = self.norm2(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block."""
def __init__(
self,
features,
activation,
deconv=False,
bn=False,
expand=False,
align_corners=True,
size=None,
has_residual=True,
groups=1,
):
"""Initialize FeatureFusionBlock.
Args:
features (int): Number of input/output feature channels
activation: Activation function to use
deconv (bool): Whether to use deconvolution
bn (bool): Whether to use batch normalization
expand (bool): Whether to expand features (halve output channels)
align_corners (bool): Align corners for interpolation
size: Target size for upsampling
has_residual (bool): Whether to include residual connection
groups (int): Number of groups for grouped convolution
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups = groups
self.expand = expand
out_features = features
if self.expand == True:
out_features = features // 2
self.out_conv = nn.Conv2d(
features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=self.groups
)
if has_residual:
self.resConfUnit1 = ResidualConvUnit(features, activation, bn, groups=self.groups)
self.has_residual = has_residual
self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=self.groups)
self.skip_add = nn.quantized.FloatFunctional()
self.size = size
def forward(self, *xs, size=None):
"""Forward pass through the feature fusion block.
Args:
*xs: Variable number of input tensors. First tensor is the main input,
second tensor (if present) is used for residual connection.
size: Optional target size for upsampling. If None, uses self.size or scale_factor=2.
Returns:
torch.Tensor: Fused and upsampled output tensor.
"""
output = xs[0]
if self.has_residual:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = custom_interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output
def custom_interpolate(
x: torch.Tensor,
size: Tuple[int, int] = None,
scale_factor: float = None,
mode: str = "bilinear",
align_corners: bool = True,
) -> torch.Tensor:
"""
Custom interpolation function to handle large tensors by chunking.
Avoids INT_MAX overflow issues in nn.functional.interpolate when dealing with
very large input tensors by splitting them into smaller chunks.
Args:
x: Input tensor to interpolate
size: Target output size (H, W)
scale_factor: Scaling factor if size is not provided
mode: Interpolation mode (default: "bilinear")
align_corners: Whether to align corners in interpolation
Returns:
Interpolated tensor
"""
if size is None:
size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor))
INT_MAX = 1610612736
input_elements = size[0] * size[1] * x.shape[0] * x.shape[1]
if input_elements > INT_MAX:
chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0)
interpolated_chunks = [
nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks
]
x = torch.cat(interpolated_chunks, dim=0)
return x.contiguous()
else:
return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners)
|