File size: 22,074 Bytes
0ca05b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# inspired by https://github.com/DepthAnything/Depth-Anything-V2
from typing import List, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from src.models.utils.grid import create_uv_grid, position_grid_to_embed


class DPTHead(nn.Module):
    """
    # DPT Head for dense prediction tasks.

    # This module implements the DPT (Dense Prediction Transformer) head as proposed in
    # "Vision Transformers for Dense Prediction" (https://arxiv.org/abs/2103.13413).
    # It takes features from a vision transformer backbone and generates dense (per-pixel) predictions
    # by fusing multi-scale features through a series of projection, upsampling, and refinement blocks.

    # Args:
    #   dim_in (int): Number of input feature channels.
    #   patch_size (int, optional): Patch size used by the backbone, default is 14.
    #   output_dim (int, optional): Number of output channels, default is 4.
    #   activation (str, optional): Activation function type for the output head, default is "inv_log".
    #   conf_activation (str, optional): Activation function type for the confidence/output uncertainty head, default is "expp1".
    #   features (int, optional): Number of channels used in intermediate feature representations, default is 256.
    #   out_channels (List[int], optional): Number of channels for each intermediate multi-scale feature.
    #   intermediate_layer_idx (List[int], optional): Indices specifying which backbone layers to use for multi-scale fusion.
    #   pos_embed (bool, optional): Whether to add positional encoding to the features, default is True.
    #   feature_only (bool, optional): If True, only return intermediate features (skip final prediction and activations).
    #   down_ratio (int, optional): Downsampling ratio of the output predictions, default is 1 (no downsampling).
    """

    def __init__(
        self,
        dim_in: int,
        patch_size: int = 14,
        output_dim: int = 4,
        activation: str = "inv_log+expp1",
        features: int = 256,
        out_channels: List[int] = [256, 512, 1024, 1024],
        pos_embed: bool = True,
        down_ratio: int = 1,
        is_gsdpt: bool = False
    ) -> None:
        super(DPTHead, self).__init__()
        self.patch_size = patch_size
        self.activation = activation
        self.pos_embed = pos_embed
        self.down_ratio = down_ratio
        self.is_gsdpt = is_gsdpt

        self.norm = nn.LayerNorm(dim_in)
        # Projection layers for each output channel from tokens.
        self.projects = nn.ModuleList([nn.Conv2d(in_channels=dim_in, out_channels=oc, kernel_size=1, stride=1, padding=0) for oc in out_channels])
        # Resize layers for upsampling feature maps.
        self.resize_layers = nn.ModuleList(
            [
                nn.ConvTranspose2d(
                    in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
                ),
                nn.ConvTranspose2d(
                    in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
                ),
                nn.Identity(),
                nn.Conv2d(
                    in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
                ),
            ]
        )
        self.scratch = _make_scratch(out_channels, features, expand=False)

        # Attach additional modules to scratch.
        self.scratch.stem_transpose = None

        self.scratch.refinenet1 = _make_fusion_block(features)
        self.scratch.refinenet2 = _make_fusion_block(features)
        self.scratch.refinenet3 = _make_fusion_block(features)
        self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False)

        head_features_1 = features
        head_features_2 = 32

        if self.is_gsdpt:
            self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
            conv2_in_channels = head_features_1 // 2
            self.scratch.output_conv2 = nn.Sequential(
                nn.Conv2d(conv2_in_channels, head_features_2, kernel_size=3, stride=1, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0),
            )
            self.input_merger = nn.Sequential(
                nn.Conv2d(3, conv2_in_channels, 7, 1, 3),
                nn.ReLU()
                )
        else:
            self.scratch.output_conv1 = nn.Conv2d(
                head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
            )
            conv2_in_channels = head_features_1 // 2
            self.scratch.output_conv2 = nn.Sequential(
                nn.Conv2d(conv2_in_channels, head_features_2, kernel_size=3, stride=1, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0),
            )

    def forward(
        self,
        token_list: List[torch.Tensor],
        images: torch.Tensor,
        patch_start_idx: int,
        frames_chunk_size: int = 8,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """
        Forward pass with optional frame chunking for memory efficiency.

        Args:
            token_list: List of token tensors from transformer, each [B, N, C]
            images: Input images [B, S, 3, H, W], range [0, 1]
            patch_start_idx: Starting index of patch tokens
            frames_chunk_size: Number of frames per chunk. If None or >= S, process all at once
            gradient_checkpoint: Whether to use gradient checkpointing

        Returns:
            For is_gsdpt: predictions [B, S, ...]
            Otherwise: (predictions, confidence), [B, S, X, H, W] and [B, S, 1, H, W]
        """
        B, S, _, H, W = images.shape

        # Process all frames together if chunk size not specified or large enough
        if frames_chunk_size is None or frames_chunk_size >= S:
            return self._forward_impl(token_list, images, patch_start_idx)

        assert frames_chunk_size > 0

        # Process frames in chunks
        preds_chunks = []
        conf_chunks = []
        gs_chunks = []

        for frame_start in range(0, S, frames_chunk_size):
            frame_end = min(frame_start + frames_chunk_size, S)
            
            if self.is_gsdpt:
                gs, preds, conf = self._forward_impl(
                    token_list, images, patch_start_idx, frame_start, frame_end
                )
                gs_chunks.append(gs)
                preds_chunks.append(preds)
                conf_chunks.append(conf)
            else:
                preds, conf = self._forward_impl(
                    token_list, images, patch_start_idx, frame_start, frame_end
                )
                preds_chunks.append(preds)
                conf_chunks.append(conf)

        # Concatenate chunks along frame dimension
        if self.is_gsdpt:
            return torch.cat(gs_chunks, dim=1), torch.cat(preds_chunks, dim=1), torch.cat(conf_chunks, dim=1), 
        else:
            return torch.cat(preds_chunks, dim=1), torch.cat(conf_chunks, dim=1)

    def _forward_impl(
        self,
        token_list: List[torch.Tensor],
        images: torch.Tensor,
        patch_start_idx: int,
        frame_start: int = None,
        frame_end: int = None,
    ) -> torch.Tensor:
        """
        Core forward implementation for DPT head.

        Args:
            token_list: List of transformer tokens from each layer, [B, S, N, C]
            images: Input images [B, S, 3, H, W]
            patch_start_idx: Starting index of patch tokens
            frame_start: Start index for frame chunking (optional)
            frame_end: End index for frame chunking (optional)

        Returns:
            If is_gsdpt: (features, preds, conf)
            Else: (preds, conf)
        """
        # Slice frames if chunking
        if frame_start is not None and frame_end is not None:
            images = images[:, frame_start:frame_end].contiguous()

        B, S, _, H, W = images.shape
        ph = H // self.patch_size  # patch height
        pw = W // self.patch_size  # patch width

        # Extract and project multi-level features
        feats = []
        for proj, resize, tokens in zip(self.projects, self.resize_layers, token_list):
            # Extract patch tokens
            patch_tokens = tokens[:, :, patch_start_idx:]
            if frame_start is not None and frame_end is not None:
                patch_tokens = patch_tokens[:, frame_start:frame_end]
            
            # Reshape to [B*S, N_patches, C]
            patch_tokens = patch_tokens.reshape(B * S, -1, patch_tokens.shape[-1])
            patch_tokens = self.norm(patch_tokens)
            
            # Convert to 2D feature map [B*S, C, ph, pw]
            feat = patch_tokens.permute(0, 2, 1).reshape(B * S, patch_tokens.shape[-1], ph, pw)
            feat = proj(feat)

            if self.pos_embed:
                feat = self._apply_pos_embed(feat, W, H)
            feat = resize(feat)
            feats.append(feat)

        # Fuse multi-level features
        fused = self.scratch_forward(feats)
        fused = custom_interpolate(
            fused,
            size=(
                int(ph * self.patch_size / self.down_ratio),
                int(pw * self.patch_size / self.down_ratio)
            ),
            mode="bilinear",
            align_corners=True,
        )

        # Apply positional embedding after upsampling
        if self.pos_embed:
            fused = self._apply_pos_embed(fused, W, H)

        # Generate predictions and confidence
        if self.is_gsdpt:
            # GSDPT: output features, predictions, and confidence
            out = self.scratch.output_conv2(fused)
            preds, conf = self.activate_head(out, activation=self.activation)
            preds = preds.reshape(B, S, *preds.shape[1:])
            conf = conf.reshape(B, S, *conf.shape[1:])
            
            # Merge direct image features
            img_flat = images.reshape(B * S, -1, H, W)
            img_feat = self.input_merger(img_flat)
            fused = fused + img_feat
            fused = fused.reshape(B, S, *fused.shape[1:])
            return fused, preds, conf
        else:
            # Standard: output predictions and confidence
            out = self.scratch.output_conv2(fused)
            preds, conf = self.activate_head(out, activation=self.activation)
            preds = preds.reshape(B, S, *preds.shape[1:])
            conf = conf.reshape(B, S, *conf.shape[1:])
            return preds, conf

    def _apply_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor:
        """
        Apply positional embedding to tensor x.
        """
        patch_w = x.shape[-1]
        patch_h = x.shape[-2]
        pos_embed = create_uv_grid(patch_w, patch_h, aspect_ratio=W / H, dtype=x.dtype, device=x.device)
        pos_embed = position_grid_to_embed(pos_embed, x.shape[1])
        pos_embed = pos_embed * ratio
        pos_embed = pos_embed.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1)
        return x + pos_embed

    def scratch_forward(self, features: List[torch.Tensor]) -> torch.Tensor:
        """
        Forward pass through the fusion blocks.

        Args:
            features (List[Tensor]): List of feature maps from different layers.

        Returns:
            Tensor: Fused feature map.
        """
        layer_1, layer_2, layer_3, layer_4 = features

        layer_1_rn = self.scratch.layer1_rn(layer_1)
        layer_2_rn = self.scratch.layer2_rn(layer_2)
        layer_3_rn = self.scratch.layer3_rn(layer_3)
        layer_4_rn = self.scratch.layer4_rn(layer_4)

        out = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
        del layer_4_rn, layer_4

        out = self.scratch.refinenet3(out, layer_3_rn, size=layer_2_rn.shape[2:])
        del layer_3_rn, layer_3

        out = self.scratch.refinenet2(out, layer_2_rn, size=layer_1_rn.shape[2:])
        del layer_2_rn, layer_2

        out = self.scratch.refinenet1(out, layer_1_rn)
        del layer_1_rn, layer_1

        out = self.scratch.output_conv1(out)
        return out

    def activate_head(self, out_head: torch.Tensor, activation: str = "inv_log+expp1") -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Process network output to extract attribute (e.g. points, depth, etc.) and confidence values.

        Args:
            out_head: Network output tensor (B, C, H, W)
            activation: Activation type for processing (e.g., "inv_log+expp1")

        Returns:
            Tuple of (attribute tensor, confidence tensor)
        """
        # Parse activation string
        act_attr, act_conf = (activation.split("+") if "+" in activation else (activation, "expp1"))

        # (B,C,H,W) -> (B,H,W,C)
        feat = out_head.permute(0, 2, 3, 1)
        attr, conf = feat[..., :-1], feat[..., -1]

        # Map point activations to lambdas for clarity and conciseness
        attr_activations = {
            "norm_exp": lambda x: (x / x.norm(dim=-1, keepdim=True).clamp(min=1e-8)) * torch.expm1(x.norm(dim=-1, keepdim=True)),
            "norm": lambda x: x / x.norm(dim=-1, keepdim=True),
            "exp": torch.exp,
            "relu": F.relu,
            "inv_log": self._apply_inverse_log_transform,
            "xy_inv_log": lambda x: torch.cat([
                x[..., :2] * self._apply_inverse_log_transform(x[..., 2:]), 
                self._apply_inverse_log_transform(x[..., 2:])
            ], dim=-1),
            "sigmoid": torch.sigmoid,
            "linear": lambda x: x
        }

        if act_attr not in attr_activations:
            raise ValueError(f"Unknown attribute activation: {act_attr}")
        attr_out = attr_activations[act_attr](attr)

        # Confidence activation mapping
        conf_activations = {
            "expp1": lambda c: 1 + c.exp(),
            "expp0": torch.exp,
            "sigmoid": torch.sigmoid
        }
        if act_conf not in conf_activations:
            raise ValueError(f"Unknown confidence activation: {act_conf}")
        conf_out = conf_activations[act_conf](conf)

        return attr_out, conf_out
    
    def _apply_inverse_log_transform(self, input_tensor: torch.Tensor) -> torch.Tensor:
        """
        Apply inverse logarithm transform: sign(y) * (exp(|y|) - 1)
        
        Args:
            input_tensor: Input tensor
            
        Returns:
            Transformed tensor
        """
        return torch.sign(input_tensor) * (torch.expm1(torch.abs(input_tensor)))



################################################################################
# DPT Modules
################################################################################


def _make_fusion_block(features: int, size: int = None, has_residual: bool = True, groups: int = 1) -> nn.Module:
    return FeatureFusionBlock(
        features,
        nn.ReLU(inplace=True),
        deconv=False,
        bn=False,
        expand=False,
        align_corners=True,
        size=size,
        has_residual=has_residual,
        groups=groups,
    )


def _make_scratch(in_shape: List[int], out_shape: int, groups: int = 1, expand: bool = False) -> nn.Module:
    scratch = nn.Module()
    out_shape1 = out_shape
    out_shape2 = out_shape
    out_shape3 = out_shape
    if len(in_shape) >= 4:
        out_shape4 = out_shape

    if expand:
        out_shape1 = out_shape
        out_shape2 = out_shape * 2
        out_shape3 = out_shape * 4
        if len(in_shape) >= 4:
            out_shape4 = out_shape * 8

    scratch.layer1_rn = nn.Conv2d(
        in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    scratch.layer2_rn = nn.Conv2d(
        in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    scratch.layer3_rn = nn.Conv2d(
        in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    if len(in_shape) >= 4:
        scratch.layer4_rn = nn.Conv2d(
            in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
        )
    return scratch


class ResidualConvUnit(nn.Module):
    """Residual convolution module with skip connection."""

    def __init__(self, features, activation, bn, groups=1):
        """Initialize ResidualConvUnit.

        Args:
            features (int): Number of input/output feature channels
            activation: Activation function to use
            bn (bool): Whether to use batch normalization (currently unused)
            groups (int): Number of groups for grouped convolution
        """
        super().__init__()

        self.bn = bn
        self.groups = groups
        self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
        self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)

        self.norm1 = None
        self.norm2 = None

        self.activation = activation
        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        """Forward pass with residual connection.

        Args:
            x (tensor): Input tensor of shape (B, C, H, W)

        Returns:
            tensor: Output tensor of shape (B, C, H, W) with residual added
        """

        out = self.activation(x)
        out = self.conv1(out)
        if self.norm1 is not None:
            out = self.norm1(out)

        out = self.activation(out)
        out = self.conv2(out)
        if self.norm2 is not None:
            out = self.norm2(out)

        return self.skip_add.add(out, x)


class FeatureFusionBlock(nn.Module):
    """Feature fusion block."""

    def __init__(
        self,
        features,
        activation,
        deconv=False,
        bn=False,
        expand=False,
        align_corners=True,
        size=None,
        has_residual=True,
        groups=1,
    ):
        """Initialize FeatureFusionBlock.

        Args:
            features (int): Number of input/output feature channels
            activation: Activation function to use
            deconv (bool): Whether to use deconvolution
            bn (bool): Whether to use batch normalization
            expand (bool): Whether to expand features (halve output channels)
            align_corners (bool): Align corners for interpolation
            size: Target size for upsampling
            has_residual (bool): Whether to include residual connection
            groups (int): Number of groups for grouped convolution
        """
        super(FeatureFusionBlock, self).__init__()

        self.deconv = deconv
        self.align_corners = align_corners
        self.groups = groups
        self.expand = expand
        out_features = features
        if self.expand == True:
            out_features = features // 2

        self.out_conv = nn.Conv2d(
            features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=self.groups
        )

        if has_residual:
            self.resConfUnit1 = ResidualConvUnit(features, activation, bn, groups=self.groups)

        self.has_residual = has_residual
        self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=self.groups)

        self.skip_add = nn.quantized.FloatFunctional()
        self.size = size

    def forward(self, *xs, size=None):
        """Forward pass through the feature fusion block.

        Args:
            *xs: Variable number of input tensors. First tensor is the main input,
                 second tensor (if present) is used for residual connection.
            size: Optional target size for upsampling. If None, uses self.size or scale_factor=2.

        Returns:
            torch.Tensor: Fused and upsampled output tensor.
        """
        output = xs[0]

        if self.has_residual:
            res = self.resConfUnit1(xs[1])
            output = self.skip_add.add(output, res)

        output = self.resConfUnit2(output)

        if (size is None) and (self.size is None):
            modifier = {"scale_factor": 2}
        elif size is None:
            modifier = {"size": self.size}
        else:
            modifier = {"size": size}

        output = custom_interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
        output = self.out_conv(output)

        return output


def custom_interpolate(
    x: torch.Tensor,
    size: Tuple[int, int] = None,
    scale_factor: float = None,
    mode: str = "bilinear",
    align_corners: bool = True,
) -> torch.Tensor:
    """
    Custom interpolation function to handle large tensors by chunking.
    
    Avoids INT_MAX overflow issues in nn.functional.interpolate when dealing with
    very large input tensors by splitting them into smaller chunks.
    
    Args:
        x: Input tensor to interpolate
        size: Target output size (H, W)
        scale_factor: Scaling factor if size is not provided
        mode: Interpolation mode (default: "bilinear")
        align_corners: Whether to align corners in interpolation
        
    Returns:
        Interpolated tensor
    """
    if size is None:
        size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor))

    INT_MAX = 1610612736

    input_elements = size[0] * size[1] * x.shape[0] * x.shape[1]

    if input_elements > INT_MAX:
        chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0)
        interpolated_chunks = [
            nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks
        ]
        x = torch.cat(interpolated_chunks, dim=0)
        return x.contiguous()
    else:
        return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners)