File size: 11,299 Bytes
0ca05b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from math import atan2, cos, exp, floor, sin, sqrt

import numpy as np
import torch

def fract(x):
    """Get fractional part of a number"""
    if isinstance(x, torch.Tensor):
        return x - torch.floor(x)
    return x - floor(x)

class GSEffects:
    """Convert GLSL GS render effects to PyTorch - vectorized for batch processing"""
    
    def __init__(self, start_time=0.0, end_time=10.0):
        """
        Initialize effects with time range
        
        Args:
            start_time: Animation start time
            end_time: Animation end time
        """
        self.start_time = start_time
        self.end_time = end_time
    
    @staticmethod
    def smoothstep(edge0, edge1, x):
        """GLSL smoothstep function (vectorized)"""
        if isinstance(x, torch.Tensor):
            result = torch.zeros_like(x, dtype=x.dtype)
            mask_low = x < edge0
            mask_high = x > edge1
            mask_mid = ~(mask_low | mask_high)
            
            t = (x[mask_mid] - edge0) / (edge1 - edge0)
            result[mask_mid] = t * t * (3.0 - 2.0 * t)
            result[mask_low] = 0.0
            result[mask_high] = 1.0
            return result
        else:
            if x < edge0:
                return 0.0
            if x > edge1:
                return 1.0
            t = (x - edge0) / (edge1 - edge0)
            return t * t * (3.0 - 2.0 * t)
    
    @staticmethod
    def step(edge, x):
        """GLSL step function (vectorized)"""
        if isinstance(x, torch.Tensor):
            return (x >= edge).to(x.dtype)
        if isinstance(edge, torch.Tensor):
            return (x >= edge).to(edge.dtype)
        return 1.0 if x >= edge else 0.0
    
    @staticmethod
    def mix(x, y, a):
        """GLSL mix function (linear interpolation, vectorized)"""
        return x * (1.0 - a) + y * a
    
    @staticmethod
    def clamp(x, min_val, max_val):
        """Clamp value between min and max (vectorized)"""
        if isinstance(x, torch.Tensor):
            return torch.clamp(x, min_val, max_val)
        return max(min_val, min(max_val, x))
    
    @staticmethod
    def length_xz(pos):
        """Calculate length of XZ components (vectorized)"""
        if pos.dim() == 1:
            return torch.sqrt(pos[0]**2 + pos[2]**2)
        return torch.sqrt(pos[:, 0]**2 + pos[:, 2]**2)
    
    @staticmethod
    def length_vec(v):
        """Calculate vector length (vectorized)"""
        if v.dim() == 1:
            return torch.sqrt(torch.sum(v**2))
        return torch.sqrt(torch.sum(v**2, dim=1))
    
    @staticmethod
    def hash(p):
        """Pseudo-random hash function (vectorized)"""
        p = fract(p * 0.3183099 + 0.1)
        p = p * 17.0
        return torch.stack([
            fract(p[:, 0] * p[:, 1] * p[:, 2]),
            fract(p[:, 0] + p[:, 1] * p[:, 2]),
            fract(p[:, 0] * p[:, 1] + p[:, 2])
        ], dim=1)
    
    @staticmethod
    def noise(p):
        """3D Perlin-style noise function (vectorized)"""
        i = torch.floor(p).to(torch.long)
        f = fract(p)
        f = f * f * (3.0 - 2.0 * f)
        
        def get_hash_offset(offset):
            return GSEffects.hash(i.to(p.dtype) + offset)
        
        n000 = get_hash_offset(torch.tensor([0, 0, 0], dtype=p.dtype, device=p.device))
        n100 = get_hash_offset(torch.tensor([1, 0, 0], dtype=p.dtype, device=p.device))
        n010 = get_hash_offset(torch.tensor([0, 1, 0], dtype=p.dtype, device=p.device))
        n110 = get_hash_offset(torch.tensor([1, 1, 0], dtype=p.dtype, device=p.device))
        n001 = get_hash_offset(torch.tensor([0, 0, 1], dtype=p.dtype, device=p.device))
        n101 = get_hash_offset(torch.tensor([1, 0, 1], dtype=p.dtype, device=p.device))
        n011 = get_hash_offset(torch.tensor([0, 1, 1], dtype=p.dtype, device=p.device))
        n111 = get_hash_offset(torch.tensor([1, 1, 1], dtype=p.dtype, device=p.device))
        
        x0 = GSEffects.mix(n000, n100, f[:, 0:1])
        x1 = GSEffects.mix(n010, n110, f[:, 0:1])
        x2 = GSEffects.mix(n001, n101, f[:, 0:1])
        x3 = GSEffects.mix(n011, n111, f[:, 0:1])
        
        y0 = GSEffects.mix(x0, x1, f[:, 1:2])
        y1 = GSEffects.mix(x2, x3, f[:, 1:2])
        
        return GSEffects.mix(y0, y1, f[:, 2:3])
    
    @staticmethod
    def rot_2d(angle):
        """2D rotation (vectorized)"""
        if isinstance(angle, torch.Tensor):
            s = torch.sin(angle)
            c = torch.cos(angle)
            rot = torch.stack([torch.stack([c, -s], dim=-1),
                           torch.stack([s, c], dim=-1)], dim=-2).squeeze()
        else:
            s = np.sin(angle)
            c = np.cos(angle)
            rot = torch.tensor([[c, -s],
                               [s, c]]).cuda().float()
        return rot
    
    def twister(self, pos, scale, t):
        h = self.hash(pos)[:, 0:1] + 0.1
        pos_xz_len = self.length_xz(pos)
        s = self.smoothstep(0.0, 8.0, t * t * 0.1 - pos_xz_len * 2.0 + 2.0)[:, None]
        mask = (torch.linalg.norm(scale, dim=-1, keepdim=True) < 0.05)
        pos_y = torch.where(mask, (-10. + pos[:, 1:2]) * (s ** (2 * h)), pos[:, 1:2])
        pos_xz = pos[:, [0, 2]] * torch.exp(-1 * torch.linalg.norm(pos[:, [0, 2]], dim=-1, keepdim=True))
        pos_xz = torch.einsum("n i, n i j -> n j", pos_xz, self.rot_2d(t * 0.2 + pos[:, 1:2] * 20. * (1 - s)))
        pos_new = torch.cat([pos_xz[:, 0:1], pos_y, pos_xz[:, 1:2]], dim=-1)
        return pos_new, s ** 4

    def rain(self, pos, scale, t):
        h = self.hash(pos)
        pos_xz_len = self.length_xz(pos)
        s = self.smoothstep(0.0, 5.0, t * t * 0.1 - pos_xz_len * 2.0 + 1.0) ** (0.5 + h[:, 0])
        y = pos[:, 1:2]
        pos_y = torch.minimum(-10. + s[:, None] * 15., pos[:, 1:2])
        pos_x = pos[:, 0:1] + pos_y * 0.2
        pos_xz = torch.cat([pos_x, pos[:, 2:3]], dim=-1)
        pos_xz = pos_xz * torch.matmul(self.rot_2d(t * 0.3), torch.ones_like(pos_xz).unsqueeze(-1)).squeeze(-1)
        pos_new = torch.cat([pos_xz[:, 0:1], pos_y, pos_xz[:, 1:2]], dim=-1)
        a = self.smoothstep(-10.0, y.squeeze(), pos_y.squeeze())[:, None]
        return pos_new, a
    
    def apply_effect(self, gsplat, t, effect_type, ignore_scale=False):
        """
        Apply the effect shader logic (vectorized for batch processing)
        
        Args:
            gsplat: Dictionary with:
                'means': (n, 3) tensor
                'scales': (n, 3) tensor
                'colors': (n, 3) tensor
                'quats': (n, 4) tensor
                'opacities': (n,) tensor
            t: Current time (normalized based on start_time and end_time)
            effect_type: 2=Spread
        
        Returns:
            Modified gsplat dictionary
        """
        # Normalize time to animation range
        normalized_t = t - self.start_time
        device = gsplat['means'].device
        dtype = gsplat['means'].dtype
        
        output = {
            'means': gsplat['means'].clone(),
            'quats': gsplat['quats'].clone(),
            'scales': gsplat['scales'].clone(),
            'opacities': gsplat['opacities'].clone(),
            'colors': gsplat['colors'].clone()
        }
        
        s = self.smoothstep(0.0, 10.0, normalized_t - 3.2) * 10.0
        scales = output['scales']
        local_pos = output['means'].clone()
        l = self.length_xz(local_pos)
        smoothstep_val = None

        if effect_type == 2:  # Spread Effect
            border = torch.abs(s - l - 0.5)
            decay = 1.0 - 0.2 * torch.exp(-20.0 * border)
            # decay = 1.0 - 0.7 * torch.exp(-10.0 * border)
            local_pos = local_pos * decay[:, None]
            
            smoothstep_val = self.smoothstep(s - 0.5, s, l + 0.5)
            # final_scales = self.mix(scales, 0.002, smoothstep_val[:, None])
            if not ignore_scale:
                final_scales = self.mix(scales, 1e-9, smoothstep_val[:, None])
            else:
                final_scales = scales
            
            noise_input = torch.stack([
                local_pos[:, 0] * 2.0 + normalized_t * 0.5,
                local_pos[:, 1] * 2.0 + normalized_t * 0.5,
                local_pos[:, 2] * 2.0 + normalized_t * 0.5
            ], dim=1)
            noise_val = self.noise(noise_input)
            
            output['means'] = local_pos + 0.0 * noise_val * smoothstep_val[:, None]
            output['scales'] = final_scales
            
            at = torch.atan2(local_pos[:, 0], local_pos[:, 2]) / 3.1416
            output['colors'] *= self.step(at, normalized_t - 3.1416)[:, None]
            output['colors'] += (torch.exp(-20.0 * border) + 
                                    torch.exp(-50.0 * torch.abs(normalized_t - at - 3.1416)) * 0.5)[:, None]
            output['opacities'] *= self.step(at, normalized_t - 3.1416)
            output['opacities'] += (torch.exp(-20.0 * border) + 
                                    torch.exp(-50.0 * torch.abs(normalized_t - at - 3.1416)) * 0.5)
            
            # ===== New feature: Randomly mask points based on smoothstep_val =====
            # Higher smoothstep_val means higher probability of masking
            mask_prob = smoothstep_val.squeeze() if smoothstep_val.dim() > 1 else smoothstep_val
            if not hasattr(self, "random_vals"):
                self.random_vals = torch.rand(mask_prob.shape, device=device, dtype=dtype)
            mask = self.random_vals < mask_prob*0.8  # True indicates the point is masked
            
            # Apply mask to various attributes
            if not ignore_scale:
                output['means'][mask] *= 0  # Or can be set to other values
                output['scales'][mask] *= 0  # Set scales to 0 to make points invisible
                output['opacities'][mask] *= 0  # Set opacity to 0 to make points transparent
        
        return output, smoothstep_val


# Usage example
if __name__ == "__main__":
    # Create effects processor with time range from 0 to 10 seconds
    effects = GSEffects(start_time=0.0, end_time=10.0)
    
    # Sample gsplat data (batch)
    n_points = 100
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    sample_gsplat = {
        'means': torch.randn(n_points, 3, dtype=torch.float32, device=device),
        'quats': torch.randn(n_points, 4, dtype=torch.float32, device=device),
        'scales': torch.rand(n_points, 3, dtype=torch.float32, device=device),
        'opacities': torch.rand(n_points, dtype=torch.float32, device=device),
        'colors': torch.rand(n_points, 3, dtype=torch.float32, device=device)
    }
    
    # Apply Magic effect at different time points
    for t in [0.0, 2.5, 5.0, 7.5, 10.0]:
        result = effects.apply_effect(sample_gsplat, t, effect_type=2)
        print(f"\nTime: {t}s")
        print(f"Center shape: {result['means'].shape}")
        print(f"Center[0]: {result['means'][0]}")
        print(f"Scales shape: {result['scales'].shape}")
        print(f"Scales[0]: {result['scales'][0]}")
        print(f"RGB shape: {result['colors'].shape}")
        print(f"RGB[0]: {result['colors'][0]}")
        print(f"Opacity shape: {result['opacities'].shape}")
        print(f"Opacity[0]: {result['opacities'][0]}")