ZhenweiWang's picture
Upload folder using huggingface_hub
0ca05b5 verified
# wzw
"""
Utilities for saving images, depths, normals, point clouds, and Gaussian splat data.
tencent
"""
from pathlib import Path
import numpy as np
import torch
from PIL import Image
from plyfile import PlyData, PlyElement
from io import BytesIO
import json
import os
def save_camera_params(extrinsics, intrinsics, target_dir):
"""
Save camera parameters (extrinsics and intrinsics) in JSON format
Args:
extrinsics: numpy array, shape [N, 4, 4] - extrinsic matrices for N cameras
intrinsics: numpy array, shape [N, 3, 3] - intrinsic matrices for N cameras
target_dir: str - directory to save the parameters
Returns:
str: path to the saved file
"""
camera_data = {
"num_cameras": int(extrinsics.shape[0]),
"extrinsics": [],
"intrinsics": []
}
# Convert each camera's parameters to list format
for i in range(extrinsics.shape[0]):
camera_data["extrinsics"].append({
"camera_id": i,
"matrix": extrinsics[i].tolist() # [4, 4] -> list
})
camera_data["intrinsics"].append({
"camera_id": i,
"matrix": intrinsics[i].tolist() # [3, 3] -> list
})
# Save as JSON file
camera_params_path = os.path.join(target_dir, "camera_params.json")
with open(camera_params_path, 'w') as f:
json.dump(camera_data, f, indent=2)
return camera_params_path
def save_image_png(path: Path, image_tensor: torch.Tensor) -> None:
# image_tensor: [H, W, 3]
img = (image_tensor.detach().cpu() * 255.0).to(torch.uint8).numpy()
Image.fromarray(img).save(str(path))
def save_depth_png(path: Path, depth_tensor: torch.Tensor) -> None:
# depth_tensor: [H, W]
d = depth_tensor.detach()
d = d - d.min()
d = d / (d.max() + 1e-9)
img = (d.clamp(0, 1) * 255.0).to(torch.uint8).cpu().numpy()
Image.fromarray(img, mode="L").save(str(path))
def save_depth_npy(path: Path, depth_tensor: torch.Tensor) -> None:
# depth_tensor: [H, W]
# Save actual depth values in numpy format
d = depth_tensor.detach().cpu().numpy()
np.save(str(path), d)
def save_normal_png(path: Path, normal_hwc: torch.Tensor) -> None:
# normal_hwc: [H, W, 3], in [-1, 1]
n = (normal_hwc.detach().cpu() + 1.0) * 0.5
img = (n.clamp(0, 1) * 255.0).to(torch.uint8).numpy()
Image.fromarray(img).save(str(path))
def save_scene_ply(path: Path,
points_xyz: torch.Tensor,
point_colors: torch.Tensor,
valid_mask: torch.Tensor = None) -> None:
"""Save point cloud to PLY format"""
pts = points_xyz.detach().cpu().to(torch.float32).numpy().reshape(-1, 3)
colors = point_colors.detach().cpu().to(torch.uint8).numpy().reshape(-1, 3)
# Filter out invalid points (NaN, Inf)
if valid_mask is None:
valid_mask = np.isfinite(pts).all(axis=1)
else:
valid_mask = valid_mask.detach().cpu().numpy().reshape(-1)
pts = pts[valid_mask]
colors = colors[valid_mask]
# Handle empty point cloud
if len(pts) == 0:
pts = np.array([[0, 0, 0]], dtype=np.float32)
colors = np.array([[255, 255, 255]], dtype=np.uint8)
# Create PLY data
vertex_dtype = [("x", "f4"), ("y", "f4"), ("z", "f4"),
("red", "u1"), ("green", "u1"), ("blue", "u1")]
vertex_elements = np.empty(len(pts), dtype=vertex_dtype)
vertex_elements["x"] = pts[:, 0]
vertex_elements["y"] = pts[:, 1]
vertex_elements["z"] = pts[:, 2]
vertex_elements["red"] = colors[:, 0]
vertex_elements["green"] = colors[:, 1]
vertex_elements["blue"] = colors[:, 2]
# Write PLY file
PlyData([PlyElement.describe(vertex_elements, "vertex")]).write(str(path))
def save_points_ply(path: Path, pts_np: np.ndarray, cols_np: np.ndarray) -> None:
"""Save point cloud to PLY format from numpy arrays"""
vertex_dtype = [("x", "f4"), ("y", "f4"), ("z", "f4"),
("red", "u1"), ("green", "u1"), ("blue", "u1")]
vertex_elements = np.empty(len(pts_np), dtype=vertex_dtype)
vertex_elements["x"] = pts_np[:, 0]
vertex_elements["y"] = pts_np[:, 1]
vertex_elements["z"] = pts_np[:, 2]
vertex_elements["red"] = cols_np[:, 0]
vertex_elements["green"] = cols_np[:, 1]
vertex_elements["blue"] = cols_np[:, 2]
# Write PLY file
PlyData([PlyElement.describe(vertex_elements, "vertex")]).write(str(path))
def save_gs_ply(path: Path,
means: torch.Tensor,
scales: torch.Tensor,
rotations: torch.Tensor,
rgbs: torch.Tensor,
opacities: torch.Tensor) -> None:
"""
Export Gaussian splat data to PLY format.
Args:
path: Output PLY file path
means: Gaussian centers [N, 3]
scales: Gaussian scales [N, 3]
rotations: Gaussian rotations as quaternions [N, 4]
rgbs: RGB colors [N, 3]
opacities: Opacity values [N]
"""
# Filter out points with scales greater than the 95th percentile
scale_threshold = torch.quantile(scales.max(dim=-1)[0], 0.95, dim=0)
filter_mask = scales.max(dim=-1)[0] <= scale_threshold
# Apply the filter to all tensors
means = means[filter_mask].reshape(-1, 3)
scales = scales[filter_mask].reshape(-1, 3)
rotations = rotations[filter_mask].reshape(-1, 4)
rgbs = rgbs[filter_mask].reshape(-1, 3)
opacities = opacities[filter_mask].reshape(-1)
# Construct attribute names
attributes = ["x", "y", "z", "nx", "ny", "nz"]
for i in range(3):
attributes.append(f"f_dc_{i}")
attributes.append("opacity")
for i in range(3):
attributes.append(f"scale_{i}")
for i in range(4):
attributes.append(f"rot_{i}")
# Prepare PLY data structure
dtype_full = [(attribute, "f4") for attribute in attributes]
elements = np.empty(means.shape[0], dtype=dtype_full)
# Concatenate all attributes
attributes_data = (
means.float().detach().cpu().numpy(),
torch.zeros_like(means).float().detach().cpu().numpy(),
rgbs.detach().cpu().contiguous().numpy(),
opacities[..., None].detach().cpu().numpy(),
scales.log().detach().cpu().numpy(),
rotations.detach().cpu().numpy(),
)
attributes_data = np.concatenate(attributes_data, axis=1)
elements[:] = list(map(tuple, attributes_data))
# Write to PLY file
PlyData([PlyElement.describe(elements, "vertex")]).write(str(path))
def convert_gs_to_ply(means, scales, rotations, rgbs, opacities):
"""
Export Gaussian splat data to PLY format.
Args:
path: Output PLY file path
means: Gaussian centers [N, 3]
scales: Gaussian scales [N, 3]
rotations: Gaussian rotations as quaternions [N, 4]
rgbs: RGB colors [N, 3]
opacities: Opacity values [N]
"""
# Filter out points with scales greater than the 90th percentile
scale_threshold = torch.quantile(scales.max(dim=-1)[0], 0.90, dim=0)
filter_mask = scales.max(dim=-1)[0] <= scale_threshold
# Apply the filter to all tensors
means = means[filter_mask].reshape(-1, 3)
scales = scales[filter_mask].reshape(-1, 3)
rotations = rotations[filter_mask].reshape(-1, 4)
rgbs = rgbs[filter_mask].reshape(-1, 3)
opacities = opacities[filter_mask].reshape(-1)
# Construct attribute names
attributes = ["x", "y", "z", "nx", "ny", "nz"]
for i in range(3):
attributes.append(f"f_dc_{i}")
attributes.append("opacity")
for i in range(3):
attributes.append(f"scale_{i}")
for i in range(4):
attributes.append(f"rot_{i}")
# Prepare PLY data structure
dtype_full = [(attribute, "f4") for attribute in attributes]
elements = np.empty(means.shape[0], dtype=dtype_full)
# Concatenate all attributes
attributes_data = (
means.float().detach().cpu().numpy(),
torch.zeros_like(means).float().detach().cpu().numpy(),
rgbs.detach().cpu().contiguous().numpy(),
opacities[..., None].detach().cpu().numpy(),
scales.log().detach().cpu().numpy(),
rotations.detach().cpu().numpy(),
)
attributes_data = np.concatenate(attributes_data, axis=1)
elements[:] = list(map(tuple, attributes_data))
plydata = PlyData([PlyElement.describe(elements, "vertex")])
return plydata
def process_ply_to_splat(plydata, output_path):
vert = plydata["vertex"]
sorted_indices = np.argsort(
-np.exp(vert["scale_0"] + vert["scale_1"] + vert["scale_2"])
/ (1 + np.exp(-vert["opacity"]))
)
buffer = BytesIO()
for idx in sorted_indices:
v = plydata["vertex"][idx]
position = np.array([v["x"], v["y"], v["z"]], dtype=np.float32)
scales = np.exp(
np.array(
[v["scale_0"], v["scale_1"], v["scale_2"]],
dtype=np.float32,
)
)
rot = np.array(
[v["rot_0"], v["rot_1"], v["rot_2"], v["rot_3"]],
dtype=np.float32,
)
SH_C0 = 0.28209479177387814
color = np.array(
[
0.5 + SH_C0 * v["f_dc_0"],
0.5 + SH_C0 * v["f_dc_1"],
0.5 + SH_C0 * v["f_dc_2"],
1 / (1 + np.exp(-v["opacity"])),
]
)
buffer.write(position.tobytes())
buffer.write(scales.tobytes())
buffer.write((color * 255).clip(0, 255).astype(np.uint8).tobytes())
buffer.write(
((rot / np.linalg.norm(rot)) * 128 + 128)
.clip(0, 255)
.astype(np.uint8)
.tobytes()
)
value = buffer.getvalue()
with open(output_path, "wb") as f:
f.write(value)
return output_path