root commited on
Commit
f919478
·
1 Parent(s): 3162dea

support large model

Browse files
app.py CHANGED
@@ -16,14 +16,14 @@ from download import download_model
16
  # 下载模型
17
  APP_DIR = op.dirname(op.abspath(__file__))
18
  download_model(APP_DIR)
19
- base_full_path = op.join(APP_DIR, "ckpt", "songgeneration_base_full")
20
- os.makedirs(base_full_path, exist_ok=True)
21
- download_model(base_full_path, repo_id="lglg666/SongGeneration-base-full", revision="19ebdb6")
22
  print("Successful downloaded model.")
23
 
24
  # 模型初始化
25
  from levo_inference import LeVoInference
26
- MODEL = LeVoInference(base_full_path)
27
 
28
  EXAMPLE_LYRICS = """
29
  [intro-medium]
 
16
  # 下载模型
17
  APP_DIR = op.dirname(op.abspath(__file__))
18
  download_model(APP_DIR)
19
+ # base_full_path = op.join(APP_DIR, "ckpt", "songgeneration_base_full")
20
+ # os.makedirs(base_full_path, exist_ok=True)
21
+ download_model(op.join(APP_DIR, "ckpt"), repo_id="lglg666/SongGeneration-large-full", revision="75e2043")
22
  print("Successful downloaded model.")
23
 
24
  # 模型初始化
25
  from levo_inference import LeVoInference
26
+ MODEL = LeVoInference(op.join(APP_DIR, "ckpt", "SongGeneration-large"))
27
 
28
  EXAMPLE_LYRICS = """
29
  [intro-medium]
codeclm/tokenizer/Flow1dVAE/model_1rvq.py CHANGED
@@ -303,8 +303,8 @@ class PromptCondAudioDiffusion(nn.Module):
303
  for v in self.bestrq.parameters():v.requires_grad = False
304
  self.rvq_bestrq_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
305
  for v in self.rvq_bestrq_emb.parameters():v.requires_grad = False
306
- self.hubert = HubertModelWithFinalProj.from_pretrained("ckpt/models--lengyue233--content-vec-best/snapshots/c0b9ba13db21beaa4053faae94c102ebe326fd68")
307
- for v in self.hubert.parameters():v.requires_grad = False
308
  self.zero_cond_embedding1 = nn.Parameter(torch.randn(32*32,))
309
  # self.xvecmodel = XVECModel()
310
  config = GPT2Config(n_positions=1000,n_layer=39,n_head=30,n_embd=1200)
@@ -317,7 +317,7 @@ class PromptCondAudioDiffusion(nn.Module):
317
  nn.Linear(1024, 768)
318
  )
319
  self.set_from = "random"
320
- self.cfm_wrapper = BASECFM(unet, mlp,self.ssl_layer)
321
  self.mask_emb = torch.nn.Embedding(3, 48)
322
  print("Transformer initialized from pretrain.")
323
  torch.cuda.empty_cache()
 
303
  for v in self.bestrq.parameters():v.requires_grad = False
304
  self.rvq_bestrq_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
305
  for v in self.rvq_bestrq_emb.parameters():v.requires_grad = False
306
+ # self.hubert = HubertModelWithFinalProj.from_pretrained("ckpt/models--lengyue233--content-vec-best/snapshots/c0b9ba13db21beaa4053faae94c102ebe326fd68")
307
+ # for v in self.hubert.parameters():v.requires_grad = False
308
  self.zero_cond_embedding1 = nn.Parameter(torch.randn(32*32,))
309
  # self.xvecmodel = XVECModel()
310
  config = GPT2Config(n_positions=1000,n_layer=39,n_head=30,n_embd=1200)
 
317
  nn.Linear(1024, 768)
318
  )
319
  self.set_from = "random"
320
+ # self.cfm_wrapper = BASECFM(unet, mlp,self.ssl_layer)
321
  self.mask_emb = torch.nn.Embedding(3, 48)
322
  print("Transformer initialized from pretrain.")
323
  torch.cuda.empty_cache()
codeclm/tokenizer/Flow1dVAE/model_septoken.py CHANGED
@@ -271,8 +271,8 @@ class PromptCondAudioDiffusion(nn.Module):
271
  for v in self.bestrq.parameters():v.requires_grad = False
272
  self.rvq_bestrq_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
273
  self.rvq_bestrq_bgm_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
274
- self.hubert = HubertModelWithFinalProj.from_pretrained("ckpt/models--lengyue233--content-vec-best/snapshots/c0b9ba13db21beaa4053faae94c102ebe326fd68")
275
- for v in self.hubert.parameters():v.requires_grad = False
276
  self.zero_cond_embedding1 = nn.Parameter(torch.randn(32*32,))
277
  # self.xvecmodel = XVECModel()
278
  config = GPT2Config(n_positions=1000,n_layer=16,n_head=20,n_embd=2200,n_inner=4400)
 
271
  for v in self.bestrq.parameters():v.requires_grad = False
272
  self.rvq_bestrq_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
273
  self.rvq_bestrq_bgm_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
274
+ # self.hubert = HubertModelWithFinalProj.from_pretrained("ckpt/models--lengyue233--content-vec-best/snapshots/c0b9ba13db21beaa4053faae94c102ebe326fd68")
275
+ # for v in self.hubert.parameters():v.requires_grad = False
276
  self.zero_cond_embedding1 = nn.Parameter(torch.randn(32*32,))
277
  # self.xvecmodel = XVECModel()
278
  config = GPT2Config(n_positions=1000,n_layer=16,n_head=20,n_embd=2200,n_inner=4400)
download.py CHANGED
@@ -2,7 +2,7 @@ from huggingface_hub import snapshot_download
2
  import os
3
 
4
 
5
- def download_model(local_dir, repo_id="tencent/SongGeneration", revision="647f0a5"):
6
  downloaded_path = snapshot_download(
7
  repo_id=repo_id,
8
  local_dir=local_dir,
 
2
  import os
3
 
4
 
5
+ def download_model(local_dir, repo_id="tencent/SongGeneration", revision="aa9d1b3"):
6
  downloaded_path = snapshot_download(
7
  repo_id=repo_id,
8
  local_dir=local_dir,