Spaces:
Running
on
L40S
Running
on
L40S
root
commited on
Commit
·
f919478
1
Parent(s):
3162dea
support large model
Browse files- app.py +4 -4
- codeclm/tokenizer/Flow1dVAE/model_1rvq.py +3 -3
- codeclm/tokenizer/Flow1dVAE/model_septoken.py +2 -2
- download.py +1 -1
app.py
CHANGED
|
@@ -16,14 +16,14 @@ from download import download_model
|
|
| 16 |
# 下载模型
|
| 17 |
APP_DIR = op.dirname(op.abspath(__file__))
|
| 18 |
download_model(APP_DIR)
|
| 19 |
-
base_full_path = op.join(APP_DIR, "ckpt", "songgeneration_base_full")
|
| 20 |
-
os.makedirs(base_full_path, exist_ok=True)
|
| 21 |
-
download_model(
|
| 22 |
print("Successful downloaded model.")
|
| 23 |
|
| 24 |
# 模型初始化
|
| 25 |
from levo_inference import LeVoInference
|
| 26 |
-
MODEL = LeVoInference(
|
| 27 |
|
| 28 |
EXAMPLE_LYRICS = """
|
| 29 |
[intro-medium]
|
|
|
|
| 16 |
# 下载模型
|
| 17 |
APP_DIR = op.dirname(op.abspath(__file__))
|
| 18 |
download_model(APP_DIR)
|
| 19 |
+
# base_full_path = op.join(APP_DIR, "ckpt", "songgeneration_base_full")
|
| 20 |
+
# os.makedirs(base_full_path, exist_ok=True)
|
| 21 |
+
download_model(op.join(APP_DIR, "ckpt"), repo_id="lglg666/SongGeneration-large-full", revision="75e2043")
|
| 22 |
print("Successful downloaded model.")
|
| 23 |
|
| 24 |
# 模型初始化
|
| 25 |
from levo_inference import LeVoInference
|
| 26 |
+
MODEL = LeVoInference(op.join(APP_DIR, "ckpt", "SongGeneration-large"))
|
| 27 |
|
| 28 |
EXAMPLE_LYRICS = """
|
| 29 |
[intro-medium]
|
codeclm/tokenizer/Flow1dVAE/model_1rvq.py
CHANGED
|
@@ -303,8 +303,8 @@ class PromptCondAudioDiffusion(nn.Module):
|
|
| 303 |
for v in self.bestrq.parameters():v.requires_grad = False
|
| 304 |
self.rvq_bestrq_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
|
| 305 |
for v in self.rvq_bestrq_emb.parameters():v.requires_grad = False
|
| 306 |
-
self.hubert = HubertModelWithFinalProj.from_pretrained("ckpt/models--lengyue233--content-vec-best/snapshots/c0b9ba13db21beaa4053faae94c102ebe326fd68")
|
| 307 |
-
for v in self.hubert.parameters():v.requires_grad = False
|
| 308 |
self.zero_cond_embedding1 = nn.Parameter(torch.randn(32*32,))
|
| 309 |
# self.xvecmodel = XVECModel()
|
| 310 |
config = GPT2Config(n_positions=1000,n_layer=39,n_head=30,n_embd=1200)
|
|
@@ -317,7 +317,7 @@ class PromptCondAudioDiffusion(nn.Module):
|
|
| 317 |
nn.Linear(1024, 768)
|
| 318 |
)
|
| 319 |
self.set_from = "random"
|
| 320 |
-
self.cfm_wrapper = BASECFM(unet, mlp,self.ssl_layer)
|
| 321 |
self.mask_emb = torch.nn.Embedding(3, 48)
|
| 322 |
print("Transformer initialized from pretrain.")
|
| 323 |
torch.cuda.empty_cache()
|
|
|
|
| 303 |
for v in self.bestrq.parameters():v.requires_grad = False
|
| 304 |
self.rvq_bestrq_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
|
| 305 |
for v in self.rvq_bestrq_emb.parameters():v.requires_grad = False
|
| 306 |
+
# self.hubert = HubertModelWithFinalProj.from_pretrained("ckpt/models--lengyue233--content-vec-best/snapshots/c0b9ba13db21beaa4053faae94c102ebe326fd68")
|
| 307 |
+
# for v in self.hubert.parameters():v.requires_grad = False
|
| 308 |
self.zero_cond_embedding1 = nn.Parameter(torch.randn(32*32,))
|
| 309 |
# self.xvecmodel = XVECModel()
|
| 310 |
config = GPT2Config(n_positions=1000,n_layer=39,n_head=30,n_embd=1200)
|
|
|
|
| 317 |
nn.Linear(1024, 768)
|
| 318 |
)
|
| 319 |
self.set_from = "random"
|
| 320 |
+
# self.cfm_wrapper = BASECFM(unet, mlp,self.ssl_layer)
|
| 321 |
self.mask_emb = torch.nn.Embedding(3, 48)
|
| 322 |
print("Transformer initialized from pretrain.")
|
| 323 |
torch.cuda.empty_cache()
|
codeclm/tokenizer/Flow1dVAE/model_septoken.py
CHANGED
|
@@ -271,8 +271,8 @@ class PromptCondAudioDiffusion(nn.Module):
|
|
| 271 |
for v in self.bestrq.parameters():v.requires_grad = False
|
| 272 |
self.rvq_bestrq_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
|
| 273 |
self.rvq_bestrq_bgm_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
|
| 274 |
-
self.hubert = HubertModelWithFinalProj.from_pretrained("ckpt/models--lengyue233--content-vec-best/snapshots/c0b9ba13db21beaa4053faae94c102ebe326fd68")
|
| 275 |
-
for v in self.hubert.parameters():v.requires_grad = False
|
| 276 |
self.zero_cond_embedding1 = nn.Parameter(torch.randn(32*32,))
|
| 277 |
# self.xvecmodel = XVECModel()
|
| 278 |
config = GPT2Config(n_positions=1000,n_layer=16,n_head=20,n_embd=2200,n_inner=4400)
|
|
|
|
| 271 |
for v in self.bestrq.parameters():v.requires_grad = False
|
| 272 |
self.rvq_bestrq_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
|
| 273 |
self.rvq_bestrq_bgm_emb = ResidualVectorQuantize(input_dim = 1024, n_codebooks = 1, codebook_size = 16_384, codebook_dim = 32, quantizer_dropout = 0.0, stale_tolerance=200)
|
| 274 |
+
# self.hubert = HubertModelWithFinalProj.from_pretrained("ckpt/models--lengyue233--content-vec-best/snapshots/c0b9ba13db21beaa4053faae94c102ebe326fd68")
|
| 275 |
+
# for v in self.hubert.parameters():v.requires_grad = False
|
| 276 |
self.zero_cond_embedding1 = nn.Parameter(torch.randn(32*32,))
|
| 277 |
# self.xvecmodel = XVECModel()
|
| 278 |
config = GPT2Config(n_positions=1000,n_layer=16,n_head=20,n_embd=2200,n_inner=4400)
|
download.py
CHANGED
|
@@ -2,7 +2,7 @@ from huggingface_hub import snapshot_download
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
|
| 5 |
-
def download_model(local_dir, repo_id="tencent/SongGeneration", revision="
|
| 6 |
downloaded_path = snapshot_download(
|
| 7 |
repo_id=repo_id,
|
| 8 |
local_dir=local_dir,
|
|
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
|
| 5 |
+
def download_model(local_dir, repo_id="tencent/SongGeneration", revision="aa9d1b3"):
|
| 6 |
downloaded_path = snapshot_download(
|
| 7 |
repo_id=repo_id,
|
| 8 |
local_dir=local_dir,
|