Spaces:
Running
Running
Create test.py
Browse files
test.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 3 |
+
|
| 4 |
+
model_name = "deepseek-ai/deepseek-math-7b-instruct"
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 7 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
| 8 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
| 9 |
+
|
| 10 |
+
messages = [
|
| 11 |
+
{"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."}
|
| 12 |
+
]
|
| 13 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
| 14 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
|
| 15 |
+
|
| 16 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
| 17 |
+
print(result)
|