Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2024 Custom Diffusion authors and the HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| import argparse | |
| import itertools | |
| import json | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import shutil | |
| import warnings | |
| from pathlib import Path | |
| import numpy as np | |
| import safetensors | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import ProjectConfiguration, set_seed | |
| from huggingface_hub import HfApi, create_repo | |
| from huggingface_hub.utils import insecure_hashlib | |
| from packaging import version | |
| from PIL import Image | |
| from torch.utils.data import Dataset | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| from transformers import AutoTokenizer, PretrainedConfig | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDPMScheduler, | |
| DiffusionPipeline, | |
| DPMSolverMultistepScheduler, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.loaders import AttnProcsLayers | |
| from diffusers.models.attention_processor import ( | |
| CustomDiffusionAttnProcessor, | |
| CustomDiffusionAttnProcessor2_0, | |
| CustomDiffusionXFormersAttnProcessor, | |
| ) | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.utils import check_min_version, is_wandb_available | |
| from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
| from diffusers.utils.import_utils import is_xformers_available | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.33.0.dev0") | |
| logger = get_logger(__name__) | |
| def freeze_params(params): | |
| for param in params: | |
| param.requires_grad = False | |
| def save_model_card(repo_id: str, images=None, base_model=str, prompt=str, repo_folder=None): | |
| img_str = "" | |
| for i, image in enumerate(images): | |
| image.save(os.path.join(repo_folder, f"image_{i}.png")) | |
| img_str += f"\n" | |
| model_description = f""" | |
| # Custom Diffusion - {repo_id} | |
| These are Custom Diffusion adaption weights for {base_model}. The weights were trained on {prompt} using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. \n | |
| {img_str} | |
| \nFor more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion). | |
| """ | |
| model_card = load_or_create_model_card( | |
| repo_id_or_path=repo_id, | |
| from_training=True, | |
| license="creativeml-openrail-m", | |
| base_model=base_model, | |
| prompt=prompt, | |
| model_description=model_description, | |
| inference=True, | |
| ) | |
| tags = [ | |
| "text-to-image", | |
| "diffusers", | |
| "stable-diffusion", | |
| "stable-diffusion-diffusers", | |
| "custom-diffusion", | |
| "diffusers-training", | |
| ] | |
| model_card = populate_model_card(model_card, tags=tags) | |
| model_card.save(os.path.join(repo_folder, "README.md")) | |
| def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): | |
| text_encoder_config = PretrainedConfig.from_pretrained( | |
| pretrained_model_name_or_path, | |
| subfolder="text_encoder", | |
| revision=revision, | |
| ) | |
| model_class = text_encoder_config.architectures[0] | |
| if model_class == "CLIPTextModel": | |
| from transformers import CLIPTextModel | |
| return CLIPTextModel | |
| elif model_class == "RobertaSeriesModelWithTransformation": | |
| from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation | |
| return RobertaSeriesModelWithTransformation | |
| else: | |
| raise ValueError(f"{model_class} is not supported.") | |
| def collate_fn(examples, with_prior_preservation): | |
| input_ids = [example["instance_prompt_ids"] for example in examples] | |
| pixel_values = [example["instance_images"] for example in examples] | |
| mask = [example["mask"] for example in examples] | |
| # Concat class and instance examples for prior preservation. | |
| # We do this to avoid doing two forward passes. | |
| if with_prior_preservation: | |
| input_ids += [example["class_prompt_ids"] for example in examples] | |
| pixel_values += [example["class_images"] for example in examples] | |
| mask += [example["class_mask"] for example in examples] | |
| input_ids = torch.cat(input_ids, dim=0) | |
| pixel_values = torch.stack(pixel_values) | |
| mask = torch.stack(mask) | |
| pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
| mask = mask.to(memory_format=torch.contiguous_format).float() | |
| batch = {"input_ids": input_ids, "pixel_values": pixel_values, "mask": mask.unsqueeze(1)} | |
| return batch | |
| class PromptDataset(Dataset): | |
| """A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" | |
| def __init__(self, prompt, num_samples): | |
| self.prompt = prompt | |
| self.num_samples = num_samples | |
| def __len__(self): | |
| return self.num_samples | |
| def __getitem__(self, index): | |
| example = {} | |
| example["prompt"] = self.prompt | |
| example["index"] = index | |
| return example | |
| class CustomDiffusionDataset(Dataset): | |
| """ | |
| A dataset to prepare the instance and class images with the prompts for fine-tuning the model. | |
| It pre-processes the images and the tokenizes prompts. | |
| """ | |
| def __init__( | |
| self, | |
| concepts_list, | |
| tokenizer, | |
| size=512, | |
| mask_size=64, | |
| center_crop=False, | |
| with_prior_preservation=False, | |
| num_class_images=200, | |
| hflip=False, | |
| aug=True, | |
| ): | |
| self.size = size | |
| self.mask_size = mask_size | |
| self.center_crop = center_crop | |
| self.tokenizer = tokenizer | |
| self.interpolation = Image.BILINEAR | |
| self.aug = aug | |
| self.instance_images_path = [] | |
| self.class_images_path = [] | |
| self.with_prior_preservation = with_prior_preservation | |
| for concept in concepts_list: | |
| inst_img_path = [ | |
| (x, concept["instance_prompt"]) for x in Path(concept["instance_data_dir"]).iterdir() if x.is_file() | |
| ] | |
| self.instance_images_path.extend(inst_img_path) | |
| if with_prior_preservation: | |
| class_data_root = Path(concept["class_data_dir"]) | |
| if os.path.isdir(class_data_root): | |
| class_images_path = list(class_data_root.iterdir()) | |
| class_prompt = [concept["class_prompt"] for _ in range(len(class_images_path))] | |
| else: | |
| with open(class_data_root, "r") as f: | |
| class_images_path = f.read().splitlines() | |
| with open(concept["class_prompt"], "r") as f: | |
| class_prompt = f.read().splitlines() | |
| class_img_path = list(zip(class_images_path, class_prompt)) | |
| self.class_images_path.extend(class_img_path[:num_class_images]) | |
| random.shuffle(self.instance_images_path) | |
| self.num_instance_images = len(self.instance_images_path) | |
| self.num_class_images = len(self.class_images_path) | |
| self._length = max(self.num_class_images, self.num_instance_images) | |
| self.flip = transforms.RandomHorizontalFlip(0.5 * hflip) | |
| self.image_transforms = transforms.Compose( | |
| [ | |
| self.flip, | |
| transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| def __len__(self): | |
| return self._length | |
| def preprocess(self, image, scale, resample): | |
| outer, inner = self.size, scale | |
| factor = self.size // self.mask_size | |
| if scale > self.size: | |
| outer, inner = scale, self.size | |
| top, left = np.random.randint(0, outer - inner + 1), np.random.randint(0, outer - inner + 1) | |
| image = image.resize((scale, scale), resample=resample) | |
| image = np.array(image).astype(np.uint8) | |
| image = (image / 127.5 - 1.0).astype(np.float32) | |
| instance_image = np.zeros((self.size, self.size, 3), dtype=np.float32) | |
| mask = np.zeros((self.size // factor, self.size // factor)) | |
| if scale > self.size: | |
| instance_image = image[top : top + inner, left : left + inner, :] | |
| mask = np.ones((self.size // factor, self.size // factor)) | |
| else: | |
| instance_image[top : top + inner, left : left + inner, :] = image | |
| mask[ | |
| top // factor + 1 : (top + scale) // factor - 1, left // factor + 1 : (left + scale) // factor - 1 | |
| ] = 1.0 | |
| return instance_image, mask | |
| def __getitem__(self, index): | |
| example = {} | |
| instance_image, instance_prompt = self.instance_images_path[index % self.num_instance_images] | |
| instance_image = Image.open(instance_image) | |
| if not instance_image.mode == "RGB": | |
| instance_image = instance_image.convert("RGB") | |
| instance_image = self.flip(instance_image) | |
| # apply resize augmentation and create a valid image region mask | |
| random_scale = self.size | |
| if self.aug: | |
| random_scale = ( | |
| np.random.randint(self.size // 3, self.size + 1) | |
| if np.random.uniform() < 0.66 | |
| else np.random.randint(int(1.2 * self.size), int(1.4 * self.size)) | |
| ) | |
| instance_image, mask = self.preprocess(instance_image, random_scale, self.interpolation) | |
| if random_scale < 0.6 * self.size: | |
| instance_prompt = np.random.choice(["a far away ", "very small "]) + instance_prompt | |
| elif random_scale > self.size: | |
| instance_prompt = np.random.choice(["zoomed in ", "close up "]) + instance_prompt | |
| example["instance_images"] = torch.from_numpy(instance_image).permute(2, 0, 1) | |
| example["mask"] = torch.from_numpy(mask) | |
| example["instance_prompt_ids"] = self.tokenizer( | |
| instance_prompt, | |
| truncation=True, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| return_tensors="pt", | |
| ).input_ids | |
| if self.with_prior_preservation: | |
| class_image, class_prompt = self.class_images_path[index % self.num_class_images] | |
| class_image = Image.open(class_image) | |
| if not class_image.mode == "RGB": | |
| class_image = class_image.convert("RGB") | |
| example["class_images"] = self.image_transforms(class_image) | |
| example["class_mask"] = torch.ones_like(example["mask"]) | |
| example["class_prompt_ids"] = self.tokenizer( | |
| class_prompt, | |
| truncation=True, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| return_tensors="pt", | |
| ).input_ids | |
| return example | |
| def save_new_embed(text_encoder, modifier_token_id, accelerator, args, output_dir, safe_serialization=True): | |
| """Saves the new token embeddings from the text encoder.""" | |
| logger.info("Saving embeddings") | |
| learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight | |
| for x, y in zip(modifier_token_id, args.modifier_token): | |
| learned_embeds_dict = {} | |
| learned_embeds_dict[y] = learned_embeds[x] | |
| if safe_serialization: | |
| filename = f"{output_dir}/{y}.safetensors" | |
| safetensors.torch.save_file(learned_embeds_dict, filename, metadata={"format": "pt"}) | |
| else: | |
| filename = f"{output_dir}/{y}.bin" | |
| torch.save(learned_embeds_dict, filename) | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Custom Diffusion training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--variant", | |
| type=str, | |
| default=None, | |
| help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| type=str, | |
| default=None, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--instance_data_dir", | |
| type=str, | |
| default=None, | |
| help="A folder containing the training data of instance images.", | |
| ) | |
| parser.add_argument( | |
| "--class_data_dir", | |
| type=str, | |
| default=None, | |
| help="A folder containing the training data of class images.", | |
| ) | |
| parser.add_argument( | |
| "--instance_prompt", | |
| type=str, | |
| default=None, | |
| help="The prompt with identifier specifying the instance", | |
| ) | |
| parser.add_argument( | |
| "--class_prompt", | |
| type=str, | |
| default=None, | |
| help="The prompt to specify images in the same class as provided instance images.", | |
| ) | |
| parser.add_argument( | |
| "--validation_prompt", | |
| type=str, | |
| default=None, | |
| help="A prompt that is used during validation to verify that the model is learning.", | |
| ) | |
| parser.add_argument( | |
| "--num_validation_images", | |
| type=int, | |
| default=2, | |
| help="Number of images that should be generated during validation with `validation_prompt`.", | |
| ) | |
| parser.add_argument( | |
| "--validation_steps", | |
| type=int, | |
| default=50, | |
| help=( | |
| "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" | |
| " `args.validation_prompt` multiple times: `args.num_validation_images`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--with_prior_preservation", | |
| default=False, | |
| action="store_true", | |
| help="Flag to add prior preservation loss.", | |
| ) | |
| parser.add_argument( | |
| "--real_prior", | |
| default=False, | |
| action="store_true", | |
| help="real images as prior.", | |
| ) | |
| parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") | |
| parser.add_argument( | |
| "--num_class_images", | |
| type=int, | |
| default=200, | |
| help=( | |
| "Minimal class images for prior preservation loss. If there are not enough images already present in" | |
| " class_data_dir, additional images will be sampled with class_prompt." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="custom-diffusion-model", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument( | |
| "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=250, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
| " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-5, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=2, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--freeze_model", | |
| type=str, | |
| default="crossattn_kv", | |
| choices=["crossattn_kv", "crossattn"], | |
| help="crossattn to enable fine-tuning of all params in the cross attention", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--prior_generation_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp32", "fp16", "bf16"], | |
| help=( | |
| "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--concepts_list", | |
| type=str, | |
| default=None, | |
| help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.", | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument( | |
| "--set_grads_to_none", | |
| action="store_true", | |
| help=( | |
| "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
| " behaviors, so disable this argument if it causes any problems. More info:" | |
| " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--modifier_token", | |
| type=str, | |
| default=None, | |
| help="A token to use as a modifier for the concept.", | |
| ) | |
| parser.add_argument( | |
| "--initializer_token", type=str, default="ktn+pll+ucd", help="A token to use as initializer word." | |
| ) | |
| parser.add_argument("--hflip", action="store_true", help="Apply horizontal flip data augmentation.") | |
| parser.add_argument( | |
| "--noaug", | |
| action="store_true", | |
| help="Dont apply augmentation during data augmentation when this flag is enabled.", | |
| ) | |
| parser.add_argument( | |
| "--no_safe_serialization", | |
| action="store_true", | |
| help="If specified save the checkpoint not in `safetensors` format, but in original PyTorch format instead.", | |
| ) | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| if args.with_prior_preservation: | |
| if args.concepts_list is None: | |
| if args.class_data_dir is None: | |
| raise ValueError("You must specify a data directory for class images.") | |
| if args.class_prompt is None: | |
| raise ValueError("You must specify prompt for class images.") | |
| else: | |
| # logger is not available yet | |
| if args.class_data_dir is not None: | |
| warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") | |
| if args.class_prompt is not None: | |
| warnings.warn("You need not use --class_prompt without --with_prior_preservation.") | |
| return args | |
| def main(args): | |
| if args.report_to == "wandb" and args.hub_token is not None: | |
| raise ValueError( | |
| "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
| " Please use `huggingface-cli login` to authenticate with the Hub." | |
| ) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Disable AMP for MPS. | |
| if torch.backends.mps.is_available(): | |
| accelerator.native_amp = False | |
| if args.report_to == "wandb": | |
| if not is_wandb_available(): | |
| raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
| import wandb | |
| # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate | |
| # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. | |
| # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| accelerator.init_trackers("custom-diffusion", config=vars(args)) | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| if args.concepts_list is None: | |
| args.concepts_list = [ | |
| { | |
| "instance_prompt": args.instance_prompt, | |
| "class_prompt": args.class_prompt, | |
| "instance_data_dir": args.instance_data_dir, | |
| "class_data_dir": args.class_data_dir, | |
| } | |
| ] | |
| else: | |
| with open(args.concepts_list, "r") as f: | |
| args.concepts_list = json.load(f) | |
| # Generate class images if prior preservation is enabled. | |
| if args.with_prior_preservation: | |
| for i, concept in enumerate(args.concepts_list): | |
| class_images_dir = Path(concept["class_data_dir"]) | |
| if not class_images_dir.exists(): | |
| class_images_dir.mkdir(parents=True, exist_ok=True) | |
| if args.real_prior: | |
| assert ( | |
| class_images_dir / "images" | |
| ).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" | |
| assert ( | |
| len(list((class_images_dir / "images").iterdir())) == args.num_class_images | |
| ), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" | |
| assert ( | |
| class_images_dir / "caption.txt" | |
| ).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" | |
| assert ( | |
| class_images_dir / "images.txt" | |
| ).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" | |
| concept["class_prompt"] = os.path.join(class_images_dir, "caption.txt") | |
| concept["class_data_dir"] = os.path.join(class_images_dir, "images.txt") | |
| args.concepts_list[i] = concept | |
| accelerator.wait_for_everyone() | |
| else: | |
| cur_class_images = len(list(class_images_dir.iterdir())) | |
| if cur_class_images < args.num_class_images: | |
| torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 | |
| if args.prior_generation_precision == "fp32": | |
| torch_dtype = torch.float32 | |
| elif args.prior_generation_precision == "fp16": | |
| torch_dtype = torch.float16 | |
| elif args.prior_generation_precision == "bf16": | |
| torch_dtype = torch.bfloat16 | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| torch_dtype=torch_dtype, | |
| safety_checker=None, | |
| revision=args.revision, | |
| variant=args.variant, | |
| ) | |
| pipeline.set_progress_bar_config(disable=True) | |
| num_new_images = args.num_class_images - cur_class_images | |
| logger.info(f"Number of class images to sample: {num_new_images}.") | |
| sample_dataset = PromptDataset(concept["class_prompt"], num_new_images) | |
| sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) | |
| sample_dataloader = accelerator.prepare(sample_dataloader) | |
| pipeline.to(accelerator.device) | |
| for example in tqdm( | |
| sample_dataloader, | |
| desc="Generating class images", | |
| disable=not accelerator.is_local_main_process, | |
| ): | |
| images = pipeline(example["prompt"]).images | |
| for i, image in enumerate(images): | |
| hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() | |
| image_filename = ( | |
| class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" | |
| ) | |
| image.save(image_filename) | |
| del pipeline | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| # Load the tokenizer | |
| if args.tokenizer_name: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| args.tokenizer_name, | |
| revision=args.revision, | |
| use_fast=False, | |
| ) | |
| elif args.pretrained_model_name_or_path: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="tokenizer", | |
| revision=args.revision, | |
| use_fast=False, | |
| ) | |
| # import correct text encoder class | |
| text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) | |
| # Load scheduler and models | |
| noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| text_encoder = text_encoder_cls.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
| ) | |
| vae = AutoencoderKL.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant | |
| ) | |
| unet = UNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant | |
| ) | |
| # Adding a modifier token which is optimized #### | |
| # Code taken from https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py | |
| modifier_token_id = [] | |
| initializer_token_id = [] | |
| if args.modifier_token is not None: | |
| args.modifier_token = args.modifier_token.split("+") | |
| args.initializer_token = args.initializer_token.split("+") | |
| if len(args.modifier_token) > len(args.initializer_token): | |
| raise ValueError("You must specify + separated initializer token for each modifier token.") | |
| for modifier_token, initializer_token in zip( | |
| args.modifier_token, args.initializer_token[: len(args.modifier_token)] | |
| ): | |
| # Add the placeholder token in tokenizer | |
| num_added_tokens = tokenizer.add_tokens(modifier_token) | |
| if num_added_tokens == 0: | |
| raise ValueError( | |
| f"The tokenizer already contains the token {modifier_token}. Please pass a different" | |
| " `modifier_token` that is not already in the tokenizer." | |
| ) | |
| # Convert the initializer_token, placeholder_token to ids | |
| token_ids = tokenizer.encode([initializer_token], add_special_tokens=False) | |
| print(token_ids) | |
| # Check if initializer_token is a single token or a sequence of tokens | |
| if len(token_ids) > 1: | |
| raise ValueError("The initializer token must be a single token.") | |
| initializer_token_id.append(token_ids[0]) | |
| modifier_token_id.append(tokenizer.convert_tokens_to_ids(modifier_token)) | |
| # Resize the token embeddings as we are adding new special tokens to the tokenizer | |
| text_encoder.resize_token_embeddings(len(tokenizer)) | |
| # Initialise the newly added placeholder token with the embeddings of the initializer token | |
| token_embeds = text_encoder.get_input_embeddings().weight.data | |
| for x, y in zip(modifier_token_id, initializer_token_id): | |
| token_embeds[x] = token_embeds[y] | |
| # Freeze all parameters except for the token embeddings in text encoder | |
| params_to_freeze = itertools.chain( | |
| text_encoder.text_model.encoder.parameters(), | |
| text_encoder.text_model.final_layer_norm.parameters(), | |
| text_encoder.text_model.embeddings.position_embedding.parameters(), | |
| ) | |
| freeze_params(params_to_freeze) | |
| ######################################################## | |
| ######################################################## | |
| vae.requires_grad_(False) | |
| if args.modifier_token is None: | |
| text_encoder.requires_grad_(False) | |
| unet.requires_grad_(False) | |
| # For mixed precision training we cast the text_encoder and vae weights to half-precision | |
| # as these models are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move unet, vae and text_encoder to device and cast to weight_dtype | |
| if accelerator.mixed_precision != "fp16" and args.modifier_token is not None: | |
| text_encoder.to(accelerator.device, dtype=weight_dtype) | |
| unet.to(accelerator.device, dtype=weight_dtype) | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| attention_class = ( | |
| CustomDiffusionAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else CustomDiffusionAttnProcessor | |
| ) | |
| if args.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warning( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| attention_class = CustomDiffusionXFormersAttnProcessor | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| # now we will add new Custom Diffusion weights to the attention layers | |
| # It's important to realize here how many attention weights will be added and of which sizes | |
| # The sizes of the attention layers consist only of two different variables: | |
| # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`. | |
| # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`. | |
| # Let's first see how many attention processors we will have to set. | |
| # For Stable Diffusion, it should be equal to: | |
| # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12 | |
| # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2 | |
| # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18 | |
| # => 32 layers | |
| # Only train key, value projection layers if freeze_model = 'crossattn_kv' else train all params in the cross attention layer | |
| train_kv = True | |
| train_q_out = False if args.freeze_model == "crossattn_kv" else True | |
| custom_diffusion_attn_procs = {} | |
| st = unet.state_dict() | |
| for name, _ in unet.attn_processors.items(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| layer_name = name.split(".processor")[0] | |
| weights = { | |
| "to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"], | |
| "to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"], | |
| } | |
| if train_q_out: | |
| weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"] | |
| weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"] | |
| weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"] | |
| if cross_attention_dim is not None: | |
| custom_diffusion_attn_procs[name] = attention_class( | |
| train_kv=train_kv, | |
| train_q_out=train_q_out, | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| ).to(unet.device) | |
| custom_diffusion_attn_procs[name].load_state_dict(weights) | |
| else: | |
| custom_diffusion_attn_procs[name] = attention_class( | |
| train_kv=False, | |
| train_q_out=False, | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| del st | |
| unet.set_attn_processor(custom_diffusion_attn_procs) | |
| custom_diffusion_layers = AttnProcsLayers(unet.attn_processors) | |
| accelerator.register_for_checkpointing(custom_diffusion_layers) | |
| if args.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| if args.modifier_token is not None: | |
| text_encoder.gradient_checkpointing_enable() | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| if args.with_prior_preservation: | |
| args.learning_rate = args.learning_rate * 2.0 | |
| # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| # Optimizer creation | |
| optimizer = optimizer_class( | |
| itertools.chain(text_encoder.get_input_embeddings().parameters(), custom_diffusion_layers.parameters()) | |
| if args.modifier_token is not None | |
| else custom_diffusion_layers.parameters(), | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| # Dataset and DataLoaders creation: | |
| train_dataset = CustomDiffusionDataset( | |
| concepts_list=args.concepts_list, | |
| tokenizer=tokenizer, | |
| with_prior_preservation=args.with_prior_preservation, | |
| size=args.resolution, | |
| mask_size=vae.encode( | |
| torch.randn(1, 3, args.resolution, args.resolution).to(dtype=weight_dtype).to(accelerator.device) | |
| ) | |
| .latent_dist.sample() | |
| .size()[-1], | |
| center_crop=args.center_crop, | |
| num_class_images=args.num_class_images, | |
| hflip=args.hflip, | |
| aug=not args.noaug, | |
| ) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| batch_size=args.train_batch_size, | |
| shuffle=True, | |
| collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| # Scheduler and math around the number of training steps. | |
| # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation. | |
| num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes | |
| if args.max_train_steps is None: | |
| len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes) | |
| num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps) | |
| num_training_steps_for_scheduler = ( | |
| args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes | |
| ) | |
| else: | |
| num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=num_warmup_steps_for_scheduler, | |
| num_training_steps=num_training_steps_for_scheduler, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| if args.modifier_token is not None: | |
| custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| else: | |
| custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes: | |
| logger.warning( | |
| f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match " | |
| f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. " | |
| f"This inconsistency may result in the learning rate scheduler not functioning properly." | |
| ) | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| unet.train() | |
| if args.modifier_token is not None: | |
| text_encoder.train() | |
| for step, batch in enumerate(train_dataloader): | |
| with accelerator.accumulate(unet), accelerator.accumulate(text_encoder): | |
| # Convert images to latent space | |
| latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() | |
| latents = latents * vae.config.scaling_factor | |
| # Sample noise that we'll add to the latents | |
| noise = torch.randn_like(latents) | |
| bsz = latents.shape[0] | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
| timesteps = timesteps.long() | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
| # Get the text embedding for conditioning | |
| encoder_hidden_states = text_encoder(batch["input_ids"])[0] | |
| # Predict the noise residual | |
| model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
| # Get the target for loss depending on the prediction type | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
| if args.with_prior_preservation: | |
| # Chunk the noise and model_pred into two parts and compute the loss on each part separately. | |
| model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | |
| target, target_prior = torch.chunk(target, 2, dim=0) | |
| mask = torch.chunk(batch["mask"], 2, dim=0)[0] | |
| # Compute instance loss | |
| loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
| loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() | |
| # Compute prior loss | |
| prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") | |
| # Add the prior loss to the instance loss. | |
| loss = loss + args.prior_loss_weight * prior_loss | |
| else: | |
| mask = batch["mask"] | |
| loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
| loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() | |
| accelerator.backward(loss) | |
| # Zero out the gradients for all token embeddings except the newly added | |
| # embeddings for the concept, as we only want to optimize the concept embeddings | |
| if args.modifier_token is not None: | |
| if accelerator.num_processes > 1: | |
| grads_text_encoder = text_encoder.module.get_input_embeddings().weight.grad | |
| else: | |
| grads_text_encoder = text_encoder.get_input_embeddings().weight.grad | |
| # Get the index for tokens that we want to zero the grads for | |
| index_grads_to_zero = torch.arange(len(tokenizer)) != modifier_token_id[0] | |
| for i in range(1, len(modifier_token_id)): | |
| index_grads_to_zero = index_grads_to_zero & ( | |
| torch.arange(len(tokenizer)) != modifier_token_id[i] | |
| ) | |
| grads_text_encoder.data[index_grads_to_zero, :] = grads_text_encoder.data[ | |
| index_grads_to_zero, : | |
| ].fill_(0) | |
| if accelerator.sync_gradients: | |
| params_to_clip = ( | |
| itertools.chain(text_encoder.parameters(), custom_diffusion_layers.parameters()) | |
| if args.modifier_token is not None | |
| else custom_diffusion_layers.parameters() | |
| ) | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if global_step % args.checkpointing_steps == 0: | |
| if accelerator.is_main_process: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| if accelerator.is_main_process: | |
| images = [] | |
| if args.validation_prompt is not None and global_step % args.validation_steps == 0: | |
| logger.info( | |
| f"Running validation... \n Generating {args.num_validation_images} images with prompt:" | |
| f" {args.validation_prompt}." | |
| ) | |
| # create pipeline | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| unet=accelerator.unwrap_model(unet), | |
| text_encoder=accelerator.unwrap_model(text_encoder), | |
| tokenizer=tokenizer, | |
| revision=args.revision, | |
| variant=args.variant, | |
| torch_dtype=weight_dtype, | |
| ) | |
| pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) | |
| pipeline = pipeline.to(accelerator.device) | |
| pipeline.set_progress_bar_config(disable=True) | |
| # run inference | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
| images = [ | |
| pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[ | |
| 0 | |
| ] | |
| for _ in range(args.num_validation_images) | |
| ] | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "tensorboard": | |
| np_images = np.stack([np.asarray(img) for img in images]) | |
| tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") | |
| if tracker.name == "wandb": | |
| tracker.log( | |
| { | |
| "validation": [ | |
| wandb.Image(image, caption=f"{i}: {args.validation_prompt}") | |
| for i, image in enumerate(images) | |
| ] | |
| } | |
| ) | |
| del pipeline | |
| torch.cuda.empty_cache() | |
| # Save the custom diffusion layers | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| unet = unet.to(torch.float32) | |
| unet.save_attn_procs(args.output_dir, safe_serialization=not args.no_safe_serialization) | |
| save_new_embed( | |
| text_encoder, | |
| modifier_token_id, | |
| accelerator, | |
| args, | |
| args.output_dir, | |
| safe_serialization=not args.no_safe_serialization, | |
| ) | |
| # Final inference | |
| # Load previous pipeline | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype | |
| ) | |
| pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) | |
| pipeline = pipeline.to(accelerator.device) | |
| # load attention processors | |
| weight_name = ( | |
| "pytorch_custom_diffusion_weights.safetensors" | |
| if not args.no_safe_serialization | |
| else "pytorch_custom_diffusion_weights.bin" | |
| ) | |
| pipeline.unet.load_attn_procs(args.output_dir, weight_name=weight_name) | |
| for token in args.modifier_token: | |
| token_weight_name = f"{token}.safetensors" if not args.no_safe_serialization else f"{token}.bin" | |
| pipeline.load_textual_inversion(args.output_dir, weight_name=token_weight_name) | |
| # run inference | |
| if args.validation_prompt and args.num_validation_images > 0: | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None | |
| images = [ | |
| pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[0] | |
| for _ in range(args.num_validation_images) | |
| ] | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "tensorboard": | |
| np_images = np.stack([np.asarray(img) for img in images]) | |
| tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") | |
| if tracker.name == "wandb": | |
| tracker.log( | |
| { | |
| "test": [ | |
| wandb.Image(image, caption=f"{i}: {args.validation_prompt}") | |
| for i, image in enumerate(images) | |
| ] | |
| } | |
| ) | |
| if args.push_to_hub: | |
| save_model_card( | |
| repo_id, | |
| images=images, | |
| base_model=args.pretrained_model_name_or_path, | |
| prompt=args.instance_prompt, | |
| repo_folder=args.output_dir, | |
| ) | |
| api = HfApi(token=args.hub_token) | |
| api.upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |