Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import copy | |
| import gc | |
| import importlib | |
| import sys | |
| import time | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from packaging import version | |
| from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
| from diffusers import ( | |
| ControlNetModel, | |
| EulerDiscreteScheduler, | |
| LCMScheduler, | |
| StableDiffusionXLAdapterPipeline, | |
| StableDiffusionXLControlNetPipeline, | |
| StableDiffusionXLPipeline, | |
| T2IAdapter, | |
| ) | |
| from diffusers.utils import logging | |
| from diffusers.utils.import_utils import is_accelerate_available | |
| from diffusers.utils.testing_utils import ( | |
| CaptureLogger, | |
| load_image, | |
| nightly, | |
| numpy_cosine_similarity_distance, | |
| require_peft_backend, | |
| require_torch_gpu, | |
| slow, | |
| torch_device, | |
| ) | |
| sys.path.append(".") | |
| from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set, state_dicts_almost_equal # noqa: E402 | |
| if is_accelerate_available(): | |
| from accelerate.utils import release_memory | |
| class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): | |
| has_two_text_encoders = True | |
| pipeline_class = StableDiffusionXLPipeline | |
| scheduler_cls = EulerDiscreteScheduler | |
| scheduler_kwargs = { | |
| "beta_start": 0.00085, | |
| "beta_end": 0.012, | |
| "beta_schedule": "scaled_linear", | |
| "timestep_spacing": "leading", | |
| "steps_offset": 1, | |
| } | |
| unet_kwargs = { | |
| "block_out_channels": (32, 64), | |
| "layers_per_block": 2, | |
| "sample_size": 32, | |
| "in_channels": 4, | |
| "out_channels": 4, | |
| "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), | |
| "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), | |
| "attention_head_dim": (2, 4), | |
| "use_linear_projection": True, | |
| "addition_embed_type": "text_time", | |
| "addition_time_embed_dim": 8, | |
| "transformer_layers_per_block": (1, 2), | |
| "projection_class_embeddings_input_dim": 80, # 6 * 8 + 32 | |
| "cross_attention_dim": 64, | |
| } | |
| vae_kwargs = { | |
| "block_out_channels": [32, 64], | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| "latent_channels": 4, | |
| "sample_size": 128, | |
| } | |
| text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2" | |
| tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2" | |
| text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "peft-internal-testing/tiny-clip-text-2" | |
| tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2" | |
| def output_shape(self): | |
| return (1, 64, 64, 3) | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| class LoraSDXLIntegrationTests(unittest.TestCase): | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_sdxl_1_0_lora(self): | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
| pipe.enable_model_cpu_offload() | |
| lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
| lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
| pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
| images = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| images = images[0, -3:, -3:, -1].flatten() | |
| expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) | |
| max_diff = numpy_cosine_similarity_distance(expected, images) | |
| assert max_diff < 1e-4 | |
| pipe.unload_lora_weights() | |
| release_memory(pipe) | |
| def test_sdxl_1_0_blockwise_lora(self): | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
| pipe.enable_model_cpu_offload() | |
| lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
| lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
| pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, adapter_name="offset") | |
| scales = { | |
| "unet": { | |
| "down": {"block_1": [1.0, 1.0], "block_2": [1.0, 1.0]}, | |
| "mid": 1.0, | |
| "up": {"block_0": [1.0, 1.0, 1.0], "block_1": [1.0, 1.0, 1.0]}, | |
| }, | |
| } | |
| pipe.set_adapters(["offset"], [scales]) | |
| images = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| images = images[0, -3:, -3:, -1].flatten() | |
| expected = np.array([00.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) | |
| max_diff = numpy_cosine_similarity_distance(expected, images) | |
| assert max_diff < 1e-4 | |
| pipe.unload_lora_weights() | |
| release_memory(pipe) | |
| def test_sdxl_lcm_lora(self): | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ) | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.enable_model_cpu_offload() | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| lora_model_id = "latent-consistency/lcm-lora-sdxl" | |
| pipe.load_lora_weights(lora_model_id) | |
| image = pipe( | |
| "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5 | |
| ).images[0] | |
| expected_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png" | |
| ) | |
| image_np = pipe.image_processor.pil_to_numpy(image) | |
| expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) | |
| max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) | |
| assert max_diff < 1e-4 | |
| pipe.unload_lora_weights() | |
| release_memory(pipe) | |
| def test_sdxl_1_0_lora_fusion(self): | |
| generator = torch.Generator().manual_seed(0) | |
| pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
| lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
| lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
| pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
| pipe.fuse_lora() | |
| # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being | |
| # silently deleted - otherwise this will CPU OOM | |
| pipe.unload_lora_weights() | |
| pipe.enable_model_cpu_offload() | |
| images = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| images = images[0, -3:, -3:, -1].flatten() | |
| # This way we also test equivalence between LoRA fusion and the non-fusion behaviour. | |
| expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) | |
| max_diff = numpy_cosine_similarity_distance(expected, images) | |
| assert max_diff < 1e-4 | |
| release_memory(pipe) | |
| def test_sdxl_1_0_lora_unfusion(self): | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
| lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
| lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
| pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
| pipe.fuse_lora() | |
| pipe.enable_model_cpu_offload() | |
| images = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3 | |
| ).images | |
| images_with_fusion = images.flatten() | |
| pipe.unfuse_lora() | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| images = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3 | |
| ).images | |
| images_without_fusion = images.flatten() | |
| max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion) | |
| assert max_diff < 1e-4 | |
| release_memory(pipe) | |
| def test_sdxl_1_0_lora_unfusion_effectivity(self): | |
| pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
| pipe.enable_model_cpu_offload() | |
| generator = torch.Generator().manual_seed(0) | |
| images = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| original_image_slice = images[0, -3:, -3:, -1].flatten() | |
| lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
| lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
| pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
| pipe.fuse_lora() | |
| generator = torch.Generator().manual_seed(0) | |
| _ = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| pipe.unfuse_lora() | |
| # We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights | |
| pipe.unload_lora_weights() | |
| generator = torch.Generator().manual_seed(0) | |
| images = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| images_without_fusion_slice = images[0, -3:, -3:, -1].flatten() | |
| max_diff = numpy_cosine_similarity_distance(images_without_fusion_slice, original_image_slice) | |
| assert max_diff < 1e-3 | |
| release_memory(pipe) | |
| def test_sdxl_1_0_lora_fusion_efficiency(self): | |
| generator = torch.Generator().manual_seed(0) | |
| lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
| lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ) | |
| pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16) | |
| pipe.enable_model_cpu_offload() | |
| start_time = time.time() | |
| for _ in range(3): | |
| pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| end_time = time.time() | |
| elapsed_time_non_fusion = end_time - start_time | |
| del pipe | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ) | |
| pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16) | |
| pipe.fuse_lora() | |
| # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being | |
| # silently deleted - otherwise this will CPU OOM | |
| pipe.unload_lora_weights() | |
| pipe.enable_model_cpu_offload() | |
| generator = torch.Generator().manual_seed(0) | |
| start_time = time.time() | |
| for _ in range(3): | |
| pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| end_time = time.time() | |
| elapsed_time_fusion = end_time - start_time | |
| self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion) | |
| release_memory(pipe) | |
| def test_sdxl_1_0_last_ben(self): | |
| generator = torch.Generator().manual_seed(0) | |
| pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
| pipe.enable_model_cpu_offload() | |
| lora_model_id = "TheLastBen/Papercut_SDXL" | |
| lora_filename = "papercut.safetensors" | |
| pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
| images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images | |
| images = images[0, -3:, -3:, -1].flatten() | |
| expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094]) | |
| max_diff = numpy_cosine_similarity_distance(expected, images) | |
| assert max_diff < 1e-3 | |
| pipe.unload_lora_weights() | |
| release_memory(pipe) | |
| def test_sdxl_1_0_fuse_unfuse_all(self): | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ) | |
| text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict()) | |
| text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict()) | |
| unet_sd = copy.deepcopy(pipe.unet.state_dict()) | |
| pipe.load_lora_weights( | |
| "davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16 | |
| ) | |
| fused_te_state_dict = pipe.text_encoder.state_dict() | |
| fused_te_2_state_dict = pipe.text_encoder_2.state_dict() | |
| unet_state_dict = pipe.unet.state_dict() | |
| peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0") | |
| def remap_key(key, sd): | |
| # some keys have moved around for PEFT >= 0.7.0, but they should still be loaded correctly | |
| if (key in sd) or (not peft_ge_070): | |
| return key | |
| # instead of linear.weight, we now have linear.base_layer.weight, etc. | |
| if key.endswith(".weight"): | |
| key = key[:-7] + ".base_layer.weight" | |
| elif key.endswith(".bias"): | |
| key = key[:-5] + ".base_layer.bias" | |
| return key | |
| for key, value in text_encoder_1_sd.items(): | |
| key = remap_key(key, fused_te_state_dict) | |
| self.assertTrue(torch.allclose(fused_te_state_dict[key], value)) | |
| for key, value in text_encoder_2_sd.items(): | |
| key = remap_key(key, fused_te_2_state_dict) | |
| self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value)) | |
| for key, value in unet_state_dict.items(): | |
| self.assertTrue(torch.allclose(unet_state_dict[key], value)) | |
| pipe.fuse_lora() | |
| pipe.unload_lora_weights() | |
| assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict()) | |
| assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict()) | |
| assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict()) | |
| release_memory(pipe) | |
| del unet_sd, text_encoder_1_sd, text_encoder_2_sd | |
| def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self): | |
| generator = torch.Generator().manual_seed(0) | |
| pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
| pipe.enable_sequential_cpu_offload() | |
| lora_model_id = "hf-internal-testing/sdxl-1.0-lora" | |
| lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" | |
| pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) | |
| images = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| images = images[0, -3:, -3:, -1].flatten() | |
| expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535]) | |
| max_diff = numpy_cosine_similarity_distance(expected, images) | |
| assert max_diff < 1e-3 | |
| pipe.unload_lora_weights() | |
| release_memory(pipe) | |
| def test_controlnet_canny_lora(self): | |
| controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") | |
| pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet | |
| ) | |
| pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors") | |
| pipe.enable_sequential_cpu_offload() | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "corgi" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
| ) | |
| images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images | |
| assert images[0].shape == (768, 512, 3) | |
| original_image = images[0, -3:, -3:, -1].flatten() | |
| expected_image = np.array([0.4574, 0.4487, 0.4435, 0.5163, 0.4396, 0.4411, 0.518, 0.4465, 0.4333]) | |
| max_diff = numpy_cosine_similarity_distance(expected_image, original_image) | |
| assert max_diff < 1e-4 | |
| pipe.unload_lora_weights() | |
| release_memory(pipe) | |
| def test_sdxl_t2i_adapter_canny_lora(self): | |
| adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16).to( | |
| "cpu" | |
| ) | |
| pipe = StableDiffusionXLAdapterPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| adapter=adapter, | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| ) | |
| pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors") | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "toy" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png" | |
| ) | |
| images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images | |
| assert images[0].shape == (768, 512, 3) | |
| image_slice = images[0, -3:, -3:, -1].flatten() | |
| expected_slice = np.array([0.4284, 0.4337, 0.4319, 0.4255, 0.4329, 0.4280, 0.4338, 0.4420, 0.4226]) | |
| assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4 | |
| def test_sequential_fuse_unfuse(self): | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ) | |
| # 1. round | |
| pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) | |
| pipe.to(torch_device) | |
| pipe.fuse_lora() | |
| generator = torch.Generator().manual_seed(0) | |
| images = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| image_slice = images[0, -3:, -3:, -1].flatten() | |
| pipe.unfuse_lora() | |
| # 2. round | |
| pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16) | |
| pipe.fuse_lora() | |
| pipe.unfuse_lora() | |
| # 3. round | |
| pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16) | |
| pipe.fuse_lora() | |
| pipe.unfuse_lora() | |
| # 4. back to 1st round | |
| pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) | |
| pipe.fuse_lora() | |
| generator = torch.Generator().manual_seed(0) | |
| images_2 = pipe( | |
| "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 | |
| ).images | |
| image_slice_2 = images_2[0, -3:, -3:, -1].flatten() | |
| max_diff = numpy_cosine_similarity_distance(image_slice, image_slice_2) | |
| assert max_diff < 1e-3 | |
| pipe.unload_lora_weights() | |
| release_memory(pipe) | |
| def test_integration_logits_multi_adapter(self): | |
| path = "stabilityai/stable-diffusion-xl-base-1.0" | |
| lora_id = "CiroN2022/toy-face" | |
| pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16) | |
| pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy") | |
| pipe = pipe.to(torch_device) | |
| self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
| prompt = "toy_face of a hacker with a hoodie" | |
| lora_scale = 0.9 | |
| images = pipe( | |
| prompt=prompt, | |
| num_inference_steps=30, | |
| generator=torch.manual_seed(0), | |
| cross_attention_kwargs={"scale": lora_scale}, | |
| output_type="np", | |
| ).images | |
| expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539]) | |
| predicted_slice = images[0, -3:, -3:, -1].flatten() | |
| max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) | |
| assert max_diff < 1e-3 | |
| pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | |
| pipe.set_adapters("pixel") | |
| prompt = "pixel art, a hacker with a hoodie, simple, flat colors" | |
| images = pipe( | |
| prompt, | |
| num_inference_steps=30, | |
| guidance_scale=7.5, | |
| cross_attention_kwargs={"scale": lora_scale}, | |
| generator=torch.manual_seed(0), | |
| output_type="np", | |
| ).images | |
| predicted_slice = images[0, -3:, -3:, -1].flatten() | |
| expected_slice_scale = np.array( | |
| [0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889] | |
| ) | |
| max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) | |
| assert max_diff < 1e-3 | |
| # multi-adapter inference | |
| pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0]) | |
| images = pipe( | |
| prompt, | |
| num_inference_steps=30, | |
| guidance_scale=7.5, | |
| cross_attention_kwargs={"scale": 1.0}, | |
| generator=torch.manual_seed(0), | |
| output_type="np", | |
| ).images | |
| predicted_slice = images[0, -3:, -3:, -1].flatten() | |
| expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909]) | |
| max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) | |
| assert max_diff < 1e-3 | |
| # Lora disabled | |
| pipe.disable_lora() | |
| images = pipe( | |
| prompt, | |
| num_inference_steps=30, | |
| guidance_scale=7.5, | |
| cross_attention_kwargs={"scale": lora_scale}, | |
| generator=torch.manual_seed(0), | |
| output_type="np", | |
| ).images | |
| predicted_slice = images[0, -3:, -3:, -1].flatten() | |
| expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487]) | |
| max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) | |
| assert max_diff < 1e-3 | |
| def test_integration_logits_for_dora_lora(self): | |
| pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
| logger = logging.get_logger("diffusers.loaders.lora_pipeline") | |
| logger.setLevel(30) | |
| with CaptureLogger(logger) as cap_logger: | |
| pipeline.load_lora_weights("hf-internal-testing/dora-trained-on-kohya") | |
| pipeline.enable_model_cpu_offload() | |
| images = pipeline( | |
| "photo of ohwx dog", | |
| num_inference_steps=10, | |
| generator=torch.manual_seed(0), | |
| output_type="np", | |
| ).images | |
| assert "It seems like you are using a DoRA checkpoint" in cap_logger.out | |
| predicted_slice = images[0, -3:, -3:, -1].flatten() | |
| expected_slice_scale = np.array([0.1817, 0.0697, 0.2346, 0.0900, 0.1261, 0.2279, 0.1767, 0.1991, 0.2886]) | |
| max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) | |
| assert max_diff < 1e-3 | |