Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import torch | |
| from parameterized import parameterized | |
| from diffusers import AsymmetricAutoencoderKL | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| backend_empty_cache, | |
| enable_full_determinism, | |
| floats_tensor, | |
| load_hf_numpy, | |
| require_torch_accelerator, | |
| require_torch_gpu, | |
| skip_mps, | |
| slow, | |
| torch_all_close, | |
| torch_device, | |
| ) | |
| from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
| enable_full_determinism() | |
| class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = AsymmetricAutoencoderKL | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def get_asym_autoencoder_kl_config(self, block_out_channels=None, norm_num_groups=None): | |
| block_out_channels = block_out_channels or [2, 4] | |
| norm_num_groups = norm_num_groups or 2 | |
| init_dict = { | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), | |
| "down_block_out_channels": block_out_channels, | |
| "layers_per_down_block": 1, | |
| "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels), | |
| "up_block_out_channels": block_out_channels, | |
| "layers_per_up_block": 1, | |
| "act_fn": "silu", | |
| "latent_channels": 4, | |
| "norm_num_groups": norm_num_groups, | |
| "sample_size": 32, | |
| "scaling_factor": 0.18215, | |
| } | |
| return init_dict | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| sizes = (32, 32) | |
| image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
| mask = torch.ones((batch_size, 1) + sizes).to(torch_device) | |
| return {"sample": image, "mask": mask} | |
| def input_shape(self): | |
| return (3, 32, 32) | |
| def output_shape(self): | |
| return (3, 32, 32) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = self.get_asym_autoencoder_kl_config() | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_forward_with_norm_groups(self): | |
| pass | |
| class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase): | |
| def get_file_format(self, seed, shape): | |
| return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): | |
| dtype = torch.float16 if fp16 else torch.float32 | |
| image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | |
| return image | |
| def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False): | |
| revision = "main" | |
| torch_dtype = torch.float32 | |
| model = AsymmetricAutoencoderKL.from_pretrained( | |
| model_id, | |
| torch_dtype=torch_dtype, | |
| revision=revision, | |
| ) | |
| model.to(torch_device).eval() | |
| return model | |
| def get_generator(self, seed=0): | |
| generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" | |
| if torch_device != "mps": | |
| return torch.Generator(device=generator_device).manual_seed(seed) | |
| return torch.manual_seed(seed) | |
| def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps): | |
| model = self.get_sd_vae_model() | |
| image = self.get_sd_image(seed) | |
| generator = self.get_generator(seed) | |
| with torch.no_grad(): | |
| sample = model(image, generator=generator, sample_posterior=True).sample | |
| assert sample.shape == image.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |
| def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps): | |
| model = self.get_sd_vae_model() | |
| image = self.get_sd_image(seed) | |
| with torch.no_grad(): | |
| sample = model(image).sample | |
| assert sample.shape == image.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) | |
| def test_stable_diffusion_decode(self, seed, expected_slice): | |
| model = self.get_sd_vae_model() | |
| encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) | |
| with torch.no_grad(): | |
| sample = model.decode(encoding).sample | |
| assert list(sample.shape) == [3, 3, 512, 512] | |
| output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=2e-3) | |
| def test_stable_diffusion_decode_xformers_vs_2_0(self, seed): | |
| model = self.get_sd_vae_model() | |
| encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) | |
| with torch.no_grad(): | |
| sample = model.decode(encoding).sample | |
| model.enable_xformers_memory_efficient_attention() | |
| with torch.no_grad(): | |
| sample_2 = model.decode(encoding).sample | |
| assert list(sample.shape) == [3, 3, 512, 512] | |
| assert torch_all_close(sample, sample_2, atol=5e-2) | |
| def test_stable_diffusion_encode_sample(self, seed, expected_slice): | |
| model = self.get_sd_vae_model() | |
| image = self.get_sd_image(seed) | |
| generator = self.get_generator(seed) | |
| with torch.no_grad(): | |
| dist = model.encode(image).latent_dist | |
| sample = dist.sample(generator=generator) | |
| assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] | |
| output_slice = sample[0, -1, -3:, -3:].flatten().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| tolerance = 3e-3 if torch_device != "mps" else 1e-2 | |
| assert torch_all_close(output_slice, expected_output_slice, atol=tolerance) | |