Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import torch | |
| from diffusers import AutoencoderKLCogVideoX | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| floats_tensor, | |
| torch_device, | |
| ) | |
| from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
| enable_full_determinism() | |
| class AutoencoderKLCogVideoXTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = AutoencoderKLCogVideoX | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def get_autoencoder_kl_cogvideox_config(self): | |
| return { | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "down_block_types": ( | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| ), | |
| "up_block_types": ( | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| ), | |
| "block_out_channels": (8, 8, 8, 8), | |
| "latent_channels": 4, | |
| "layers_per_block": 1, | |
| "norm_num_groups": 2, | |
| "temporal_compression_ratio": 4, | |
| } | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_frames = 8 | |
| num_channels = 3 | |
| sizes = (16, 16) | |
| image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
| return {"sample": image} | |
| def input_shape(self): | |
| return (3, 8, 16, 16) | |
| def output_shape(self): | |
| return (3, 8, 16, 16) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = self.get_autoencoder_kl_cogvideox_config() | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_enable_disable_tiling(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict).to(torch_device) | |
| inputs_dict.update({"return_dict": False}) | |
| torch.manual_seed(0) | |
| output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| torch.manual_seed(0) | |
| model.enable_tiling() | |
| output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertLess( | |
| (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), | |
| 0.5, | |
| "VAE tiling should not affect the inference results", | |
| ) | |
| torch.manual_seed(0) | |
| model.disable_tiling() | |
| output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertEqual( | |
| output_without_tiling.detach().cpu().numpy().all(), | |
| output_without_tiling_2.detach().cpu().numpy().all(), | |
| "Without tiling outputs should match with the outputs when tiling is manually disabled.", | |
| ) | |
| def test_enable_disable_slicing(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict).to(torch_device) | |
| inputs_dict.update({"return_dict": False}) | |
| torch.manual_seed(0) | |
| output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| torch.manual_seed(0) | |
| model.enable_slicing() | |
| output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertLess( | |
| (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), | |
| 0.5, | |
| "VAE slicing should not affect the inference results", | |
| ) | |
| torch.manual_seed(0) | |
| model.disable_slicing() | |
| output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertEqual( | |
| output_without_slicing.detach().cpu().numpy().all(), | |
| output_without_slicing_2.detach().cpu().numpy().all(), | |
| "Without slicing outputs should match with the outputs when slicing is manually disabled.", | |
| ) | |
| def test_gradient_checkpointing_is_applied(self): | |
| expected_set = { | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDecoder3D", | |
| "CogVideoXEncoder3D", | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXMidBlock3D", | |
| } | |
| super().test_gradient_checkpointing_is_applied(expected_set=expected_set) | |
| def test_forward_with_norm_groups(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["norm_num_groups"] = 16 | |
| init_dict["block_out_channels"] = (16, 32, 32, 32) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.to_tuple()[0] | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_outputs_equivalence(self): | |
| pass | |