Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import copy | |
| import gc | |
| import os | |
| import tempfile | |
| import unittest | |
| from collections import OrderedDict | |
| import torch | |
| from huggingface_hub import snapshot_download | |
| from parameterized import parameterized | |
| from pytest import mark | |
| from diffusers import UNet2DConditionModel | |
| from diffusers.models.attention_processor import ( | |
| CustomDiffusionAttnProcessor, | |
| IPAdapterAttnProcessor, | |
| IPAdapterAttnProcessor2_0, | |
| ) | |
| from diffusers.models.embeddings import ImageProjection, IPAdapterFaceIDImageProjection, IPAdapterPlusImageProjection | |
| from diffusers.utils import logging | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| backend_empty_cache, | |
| enable_full_determinism, | |
| floats_tensor, | |
| is_peft_available, | |
| load_hf_numpy, | |
| require_peft_backend, | |
| require_torch_accelerator, | |
| require_torch_accelerator_with_fp16, | |
| require_torch_gpu, | |
| skip_mps, | |
| slow, | |
| torch_all_close, | |
| torch_device, | |
| ) | |
| from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
| if is_peft_available(): | |
| from peft import LoraConfig | |
| from peft.tuners.tuners_utils import BaseTunerLayer | |
| logger = logging.get_logger(__name__) | |
| enable_full_determinism() | |
| def get_unet_lora_config(): | |
| rank = 4 | |
| unet_lora_config = LoraConfig( | |
| r=rank, | |
| lora_alpha=rank, | |
| target_modules=["to_q", "to_k", "to_v", "to_out.0"], | |
| init_lora_weights=False, | |
| use_dora=False, | |
| ) | |
| return unet_lora_config | |
| def check_if_lora_correctly_set(model) -> bool: | |
| """ | |
| Checks if the LoRA layers are correctly set with peft | |
| """ | |
| for module in model.modules(): | |
| if isinstance(module, BaseTunerLayer): | |
| return True | |
| return False | |
| def create_ip_adapter_state_dict(model): | |
| # "ip_adapter" (cross-attention weights) | |
| ip_cross_attn_state_dict = {} | |
| key_id = 1 | |
| for name in model.attn_processors.keys(): | |
| cross_attention_dim = ( | |
| None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim | |
| ) | |
| if name.startswith("mid_block"): | |
| hidden_size = model.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(model.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = model.config.block_out_channels[block_id] | |
| if cross_attention_dim is not None: | |
| sd = IPAdapterAttnProcessor( | |
| hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0 | |
| ).state_dict() | |
| ip_cross_attn_state_dict.update( | |
| { | |
| f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"], | |
| f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"], | |
| } | |
| ) | |
| key_id += 2 | |
| # "image_proj" (ImageProjection layer weights) | |
| cross_attention_dim = model.config["cross_attention_dim"] | |
| image_projection = ImageProjection( | |
| cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, num_image_text_embeds=4 | |
| ) | |
| ip_image_projection_state_dict = {} | |
| sd = image_projection.state_dict() | |
| ip_image_projection_state_dict.update( | |
| { | |
| "proj.weight": sd["image_embeds.weight"], | |
| "proj.bias": sd["image_embeds.bias"], | |
| "norm.weight": sd["norm.weight"], | |
| "norm.bias": sd["norm.bias"], | |
| } | |
| ) | |
| del sd | |
| ip_state_dict = {} | |
| ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) | |
| return ip_state_dict | |
| def create_ip_adapter_plus_state_dict(model): | |
| # "ip_adapter" (cross-attention weights) | |
| ip_cross_attn_state_dict = {} | |
| key_id = 1 | |
| for name in model.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = model.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(model.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = model.config.block_out_channels[block_id] | |
| if cross_attention_dim is not None: | |
| sd = IPAdapterAttnProcessor( | |
| hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0 | |
| ).state_dict() | |
| ip_cross_attn_state_dict.update( | |
| { | |
| f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"], | |
| f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"], | |
| } | |
| ) | |
| key_id += 2 | |
| # "image_proj" (ImageProjection layer weights) | |
| cross_attention_dim = model.config["cross_attention_dim"] | |
| image_projection = IPAdapterPlusImageProjection( | |
| embed_dims=cross_attention_dim, output_dims=cross_attention_dim, dim_head=32, heads=2, num_queries=4 | |
| ) | |
| ip_image_projection_state_dict = OrderedDict() | |
| for k, v in image_projection.state_dict().items(): | |
| if "2.to" in k: | |
| k = k.replace("2.to", "0.to") | |
| elif "layers.0.ln0" in k: | |
| k = k.replace("layers.0.ln0", "layers.0.0.norm1") | |
| elif "layers.0.ln1" in k: | |
| k = k.replace("layers.0.ln1", "layers.0.0.norm2") | |
| elif "layers.1.ln0" in k: | |
| k = k.replace("layers.1.ln0", "layers.1.0.norm1") | |
| elif "layers.1.ln1" in k: | |
| k = k.replace("layers.1.ln1", "layers.1.0.norm2") | |
| elif "layers.2.ln0" in k: | |
| k = k.replace("layers.2.ln0", "layers.2.0.norm1") | |
| elif "layers.2.ln1" in k: | |
| k = k.replace("layers.2.ln1", "layers.2.0.norm2") | |
| elif "layers.3.ln0" in k: | |
| k = k.replace("layers.3.ln0", "layers.3.0.norm1") | |
| elif "layers.3.ln1" in k: | |
| k = k.replace("layers.3.ln1", "layers.3.0.norm2") | |
| elif "to_q" in k: | |
| parts = k.split(".") | |
| parts[2] = "attn" | |
| k = ".".join(parts) | |
| elif "to_out.0" in k: | |
| parts = k.split(".") | |
| parts[2] = "attn" | |
| k = ".".join(parts) | |
| k = k.replace("to_out.0", "to_out") | |
| else: | |
| k = k.replace("0.ff.0", "0.1.0") | |
| k = k.replace("0.ff.1.net.0.proj", "0.1.1") | |
| k = k.replace("0.ff.1.net.2", "0.1.3") | |
| k = k.replace("1.ff.0", "1.1.0") | |
| k = k.replace("1.ff.1.net.0.proj", "1.1.1") | |
| k = k.replace("1.ff.1.net.2", "1.1.3") | |
| k = k.replace("2.ff.0", "2.1.0") | |
| k = k.replace("2.ff.1.net.0.proj", "2.1.1") | |
| k = k.replace("2.ff.1.net.2", "2.1.3") | |
| k = k.replace("3.ff.0", "3.1.0") | |
| k = k.replace("3.ff.1.net.0.proj", "3.1.1") | |
| k = k.replace("3.ff.1.net.2", "3.1.3") | |
| # if "norm_cross" in k: | |
| # ip_image_projection_state_dict[k.replace("norm_cross", "norm1")] = v | |
| # elif "layer_norm" in k: | |
| # ip_image_projection_state_dict[k.replace("layer_norm", "norm2")] = v | |
| if "to_k" in k: | |
| parts = k.split(".") | |
| parts[2] = "attn" | |
| k = ".".join(parts) | |
| ip_image_projection_state_dict[k.replace("to_k", "to_kv")] = torch.cat([v, v], dim=0) | |
| elif "to_v" in k: | |
| continue | |
| else: | |
| ip_image_projection_state_dict[k] = v | |
| ip_state_dict = {} | |
| ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) | |
| return ip_state_dict | |
| def create_ip_adapter_faceid_state_dict(model): | |
| # "ip_adapter" (cross-attention weights) | |
| # no LoRA weights | |
| ip_cross_attn_state_dict = {} | |
| key_id = 1 | |
| for name in model.attn_processors.keys(): | |
| cross_attention_dim = ( | |
| None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim | |
| ) | |
| if name.startswith("mid_block"): | |
| hidden_size = model.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(model.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = model.config.block_out_channels[block_id] | |
| if cross_attention_dim is not None: | |
| sd = IPAdapterAttnProcessor( | |
| hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0 | |
| ).state_dict() | |
| ip_cross_attn_state_dict.update( | |
| { | |
| f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"], | |
| f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"], | |
| } | |
| ) | |
| key_id += 2 | |
| # "image_proj" (ImageProjection layer weights) | |
| cross_attention_dim = model.config["cross_attention_dim"] | |
| image_projection = IPAdapterFaceIDImageProjection( | |
| cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, mult=2, num_tokens=4 | |
| ) | |
| ip_image_projection_state_dict = {} | |
| sd = image_projection.state_dict() | |
| ip_image_projection_state_dict.update( | |
| { | |
| "proj.0.weight": sd["ff.net.0.proj.weight"], | |
| "proj.0.bias": sd["ff.net.0.proj.bias"], | |
| "proj.2.weight": sd["ff.net.2.weight"], | |
| "proj.2.bias": sd["ff.net.2.bias"], | |
| "norm.weight": sd["norm.weight"], | |
| "norm.bias": sd["norm.bias"], | |
| } | |
| ) | |
| del sd | |
| ip_state_dict = {} | |
| ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) | |
| return ip_state_dict | |
| def create_custom_diffusion_layers(model, mock_weights: bool = True): | |
| train_kv = True | |
| train_q_out = True | |
| custom_diffusion_attn_procs = {} | |
| st = model.state_dict() | |
| for name, _ in model.attn_processors.items(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = model.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(model.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = model.config.block_out_channels[block_id] | |
| layer_name = name.split(".processor")[0] | |
| weights = { | |
| "to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"], | |
| "to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"], | |
| } | |
| if train_q_out: | |
| weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"] | |
| weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"] | |
| weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"] | |
| if cross_attention_dim is not None: | |
| custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor( | |
| train_kv=train_kv, | |
| train_q_out=train_q_out, | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| ).to(model.device) | |
| custom_diffusion_attn_procs[name].load_state_dict(weights) | |
| if mock_weights: | |
| # add 1 to weights to mock trained weights | |
| with torch.no_grad(): | |
| custom_diffusion_attn_procs[name].to_k_custom_diffusion.weight += 1 | |
| custom_diffusion_attn_procs[name].to_v_custom_diffusion.weight += 1 | |
| else: | |
| custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor( | |
| train_kv=False, | |
| train_q_out=False, | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| del st | |
| return custom_diffusion_attn_procs | |
| class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = UNet2DConditionModel | |
| main_input_name = "sample" | |
| # We override the items here because the unet under consideration is small. | |
| model_split_percents = [0.5, 0.3, 0.4] | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_channels = 4 | |
| sizes = (16, 16) | |
| noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
| time_step = torch.tensor([10]).to(torch_device) | |
| encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device) | |
| return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} | |
| def input_shape(self): | |
| return (4, 16, 16) | |
| def output_shape(self): | |
| return (4, 16, 16) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = { | |
| "block_out_channels": (4, 8), | |
| "norm_num_groups": 4, | |
| "down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"), | |
| "up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"), | |
| "cross_attention_dim": 8, | |
| "attention_head_dim": 2, | |
| "out_channels": 4, | |
| "in_channels": 4, | |
| "layers_per_block": 1, | |
| "sample_size": 16, | |
| } | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_xformers_enable_works(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.enable_xformers_memory_efficient_attention() | |
| assert ( | |
| model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ | |
| == "XFormersAttnProcessor" | |
| ), "xformers is not enabled" | |
| def test_model_with_attention_head_dim_tuple(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = (8, 16) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_model_with_use_linear_projection(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["use_linear_projection"] = True | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_model_with_cross_attention_dim_tuple(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["cross_attention_dim"] = (8, 8) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_model_with_simple_projection(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| batch_size, _, _, sample_size = inputs_dict["sample"].shape | |
| init_dict["class_embed_type"] = "simple_projection" | |
| init_dict["projection_class_embeddings_input_dim"] = sample_size | |
| inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_model_with_class_embeddings_concat(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| batch_size, _, _, sample_size = inputs_dict["sample"].shape | |
| init_dict["class_embed_type"] = "simple_projection" | |
| init_dict["projection_class_embeddings_input_dim"] = sample_size | |
| init_dict["class_embeddings_concat"] = True | |
| inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_model_attention_slicing(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = (8, 16) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| model.set_attention_slice("auto") | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| assert output is not None | |
| model.set_attention_slice("max") | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| assert output is not None | |
| model.set_attention_slice(2) | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| assert output is not None | |
| def test_model_sliceable_head_dim(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = (8, 16) | |
| model = self.model_class(**init_dict) | |
| def check_sliceable_dim_attr(module: torch.nn.Module): | |
| if hasattr(module, "set_attention_slice"): | |
| assert isinstance(module.sliceable_head_dim, int) | |
| for child in module.children(): | |
| check_sliceable_dim_attr(child) | |
| # retrieve number of attention layers | |
| for module in model.children(): | |
| check_sliceable_dim_attr(module) | |
| def test_gradient_checkpointing_is_applied(self): | |
| expected_set = { | |
| "CrossAttnUpBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "UNetMidBlock2DCrossAttn", | |
| "UpBlock2D", | |
| "Transformer2DModel", | |
| "DownBlock2D", | |
| } | |
| attention_head_dim = (8, 16) | |
| block_out_channels = (16, 32) | |
| super().test_gradient_checkpointing_is_applied( | |
| expected_set=expected_set, attention_head_dim=attention_head_dim, block_out_channels=block_out_channels | |
| ) | |
| def test_special_attn_proc(self): | |
| class AttnEasyProc(torch.nn.Module): | |
| def __init__(self, num): | |
| super().__init__() | |
| self.weight = torch.nn.Parameter(torch.tensor(num)) | |
| self.is_run = False | |
| self.number = 0 | |
| self.counter = 0 | |
| def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| query = attn.to_q(hidden_states) | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| hidden_states += self.weight | |
| self.is_run = True | |
| self.counter += 1 | |
| self.number = number | |
| return hidden_states | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = (8, 16) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| processor = AttnEasyProc(5.0) | |
| model.set_attn_processor(processor) | |
| model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample | |
| assert processor.counter == 8 | |
| assert processor.is_run | |
| assert processor.number == 123 | |
| def test_model_xattn_mask(self, mask_dtype): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16), "block_out_channels": (16, 32)}) | |
| model.to(torch_device) | |
| model.eval() | |
| cond = inputs_dict["encoder_hidden_states"] | |
| with torch.no_grad(): | |
| full_cond_out = model(**inputs_dict).sample | |
| assert full_cond_out is not None | |
| keepall_mask = torch.ones(*cond.shape[:-1], device=cond.device, dtype=mask_dtype) | |
| full_cond_keepallmask_out = model(**{**inputs_dict, "encoder_attention_mask": keepall_mask}).sample | |
| assert full_cond_keepallmask_out.allclose( | |
| full_cond_out, rtol=1e-05, atol=1e-05 | |
| ), "a 'keep all' mask should give the same result as no mask" | |
| trunc_cond = cond[:, :-1, :] | |
| trunc_cond_out = model(**{**inputs_dict, "encoder_hidden_states": trunc_cond}).sample | |
| assert not trunc_cond_out.allclose( | |
| full_cond_out, rtol=1e-05, atol=1e-05 | |
| ), "discarding the last token from our cond should change the result" | |
| batch, tokens, _ = cond.shape | |
| mask_last = (torch.arange(tokens) < tokens - 1).expand(batch, -1).to(cond.device, mask_dtype) | |
| masked_cond_out = model(**{**inputs_dict, "encoder_attention_mask": mask_last}).sample | |
| assert masked_cond_out.allclose( | |
| trunc_cond_out, rtol=1e-05, atol=1e-05 | |
| ), "masking the last token from our cond should be equivalent to truncating that token out of the condition" | |
| # see diffusers.models.attention_processor::Attention#prepare_attention_mask | |
| # note: we may not need to fix mask padding to work for stable-diffusion cross-attn masks. | |
| # since the use-case (somebody passes in a too-short cross-attn mask) is pretty esoteric. | |
| # maybe it's fine that this only works for the unclip use-case. | |
| def test_model_xattn_padding(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)}) | |
| model.to(torch_device) | |
| model.eval() | |
| cond = inputs_dict["encoder_hidden_states"] | |
| with torch.no_grad(): | |
| full_cond_out = model(**inputs_dict).sample | |
| assert full_cond_out is not None | |
| batch, tokens, _ = cond.shape | |
| keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool) | |
| keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample | |
| assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result" | |
| trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool) | |
| trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample | |
| assert trunc_mask_out.allclose( | |
| keeplast_out | |
| ), "a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask." | |
| def test_custom_diffusion_processors(self): | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = (8, 16) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| with torch.no_grad(): | |
| sample1 = model(**inputs_dict).sample | |
| custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) | |
| # make sure we can set a list of attention processors | |
| model.set_attn_processor(custom_diffusion_attn_procs) | |
| model.to(torch_device) | |
| # test that attn processors can be set to itself | |
| model.set_attn_processor(model.attn_processors) | |
| with torch.no_grad(): | |
| sample2 = model(**inputs_dict).sample | |
| assert (sample1 - sample2).abs().max() < 3e-3 | |
| def test_custom_diffusion_save_load(self): | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = (8, 16) | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| with torch.no_grad(): | |
| old_sample = model(**inputs_dict).sample | |
| custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) | |
| model.set_attn_processor(custom_diffusion_attn_procs) | |
| with torch.no_grad(): | |
| sample = model(**inputs_dict).sample | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_attn_procs(tmpdirname, safe_serialization=False) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin"))) | |
| torch.manual_seed(0) | |
| new_model = self.model_class(**init_dict) | |
| new_model.load_attn_procs(tmpdirname, weight_name="pytorch_custom_diffusion_weights.bin") | |
| new_model.to(torch_device) | |
| with torch.no_grad(): | |
| new_sample = new_model(**inputs_dict).sample | |
| assert (sample - new_sample).abs().max() < 1e-4 | |
| # custom diffusion and no custom diffusion should be the same | |
| assert (sample - old_sample).abs().max() < 3e-3 | |
| def test_custom_diffusion_xformers_on_off(self): | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = (8, 16) | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) | |
| model.set_attn_processor(custom_diffusion_attn_procs) | |
| # default | |
| with torch.no_grad(): | |
| sample = model(**inputs_dict).sample | |
| model.enable_xformers_memory_efficient_attention() | |
| on_sample = model(**inputs_dict).sample | |
| model.disable_xformers_memory_efficient_attention() | |
| off_sample = model(**inputs_dict).sample | |
| assert (sample - on_sample).abs().max() < 1e-4 | |
| assert (sample - off_sample).abs().max() < 1e-4 | |
| def test_pickle(self): | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = (8, 16) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| with torch.no_grad(): | |
| sample = model(**inputs_dict).sample | |
| sample_copy = copy.copy(sample) | |
| assert (sample - sample_copy).abs().max() < 1e-4 | |
| def test_asymmetrical_unet(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| # Add asymmetry to configs | |
| init_dict["transformer_layers_per_block"] = [[3, 2], 1] | |
| init_dict["reverse_transformer_layers_per_block"] = [[3, 4], 1] | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| output = model(**inputs_dict).sample | |
| expected_shape = inputs_dict["sample"].shape | |
| # Check if input and output shapes are the same | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_ip_adapter(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = (8, 16) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| # forward pass without ip-adapter | |
| with torch.no_grad(): | |
| sample1 = model(**inputs_dict).sample | |
| # update inputs_dict for ip-adapter | |
| batch_size = inputs_dict["encoder_hidden_states"].shape[0] | |
| # for ip-adapter image_embeds has shape [batch_size, num_image, embed_dim] | |
| image_embeds = floats_tensor((batch_size, 1, model.config.cross_attention_dim)).to(torch_device) | |
| inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]} | |
| # make ip_adapter_1 and ip_adapter_2 | |
| ip_adapter_1 = create_ip_adapter_state_dict(model) | |
| image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()} | |
| cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()} | |
| ip_adapter_2 = {} | |
| ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2}) | |
| # forward pass ip_adapter_1 | |
| model._load_ip_adapter_weights([ip_adapter_1]) | |
| assert model.config.encoder_hid_dim_type == "ip_image_proj" | |
| assert model.encoder_hid_proj is not None | |
| assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in ( | |
| "IPAdapterAttnProcessor", | |
| "IPAdapterAttnProcessor2_0", | |
| ) | |
| with torch.no_grad(): | |
| sample2 = model(**inputs_dict).sample | |
| # forward pass with ip_adapter_2 | |
| model._load_ip_adapter_weights([ip_adapter_2]) | |
| with torch.no_grad(): | |
| sample3 = model(**inputs_dict).sample | |
| # forward pass with ip_adapter_1 again | |
| model._load_ip_adapter_weights([ip_adapter_1]) | |
| with torch.no_grad(): | |
| sample4 = model(**inputs_dict).sample | |
| # forward pass with multiple ip-adapters and multiple images | |
| model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2]) | |
| # set the scale for ip_adapter_2 to 0 so that result should be same as only load ip_adapter_1 | |
| for attn_processor in model.attn_processors.values(): | |
| if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): | |
| attn_processor.scale = [1, 0] | |
| image_embeds_multi = image_embeds.repeat(1, 2, 1) | |
| inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]} | |
| with torch.no_grad(): | |
| sample5 = model(**inputs_dict).sample | |
| # forward pass with single ip-adapter & single image when image_embeds is not a list and a 2-d tensor | |
| image_embeds = image_embeds.squeeze(1) | |
| inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds} | |
| model._load_ip_adapter_weights(ip_adapter_1) | |
| with torch.no_grad(): | |
| sample6 = model(**inputs_dict).sample | |
| assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4) | |
| assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4) | |
| assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4) | |
| assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4) | |
| assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4) | |
| def test_ip_adapter_plus(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = (8, 16) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| # forward pass without ip-adapter | |
| with torch.no_grad(): | |
| sample1 = model(**inputs_dict).sample | |
| # update inputs_dict for ip-adapter | |
| batch_size = inputs_dict["encoder_hidden_states"].shape[0] | |
| # for ip-adapter-plus image_embeds has shape [batch_size, num_image, sequence_length, embed_dim] | |
| image_embeds = floats_tensor((batch_size, 1, 1, model.config.cross_attention_dim)).to(torch_device) | |
| inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]} | |
| # make ip_adapter_1 and ip_adapter_2 | |
| ip_adapter_1 = create_ip_adapter_plus_state_dict(model) | |
| image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()} | |
| cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()} | |
| ip_adapter_2 = {} | |
| ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2}) | |
| # forward pass ip_adapter_1 | |
| model._load_ip_adapter_weights([ip_adapter_1]) | |
| assert model.config.encoder_hid_dim_type == "ip_image_proj" | |
| assert model.encoder_hid_proj is not None | |
| assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in ( | |
| "IPAdapterAttnProcessor", | |
| "IPAdapterAttnProcessor2_0", | |
| ) | |
| with torch.no_grad(): | |
| sample2 = model(**inputs_dict).sample | |
| # forward pass with ip_adapter_2 | |
| model._load_ip_adapter_weights([ip_adapter_2]) | |
| with torch.no_grad(): | |
| sample3 = model(**inputs_dict).sample | |
| # forward pass with ip_adapter_1 again | |
| model._load_ip_adapter_weights([ip_adapter_1]) | |
| with torch.no_grad(): | |
| sample4 = model(**inputs_dict).sample | |
| # forward pass with multiple ip-adapters and multiple images | |
| model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2]) | |
| # set the scale for ip_adapter_2 to 0 so that result should be same as only load ip_adapter_1 | |
| for attn_processor in model.attn_processors.values(): | |
| if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): | |
| attn_processor.scale = [1, 0] | |
| image_embeds_multi = image_embeds.repeat(1, 2, 1, 1) | |
| inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]} | |
| with torch.no_grad(): | |
| sample5 = model(**inputs_dict).sample | |
| # forward pass with single ip-adapter & single image when image_embeds is a 3-d tensor | |
| image_embeds = image_embeds[:,].squeeze(1) | |
| inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds} | |
| model._load_ip_adapter_weights(ip_adapter_1) | |
| with torch.no_grad(): | |
| sample6 = model(**inputs_dict).sample | |
| assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4) | |
| assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4) | |
| assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4) | |
| assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4) | |
| assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4) | |
| def test_load_sharded_checkpoint_from_hub(self, repo_id, variant): | |
| _, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| loaded_model = self.model_class.from_pretrained(repo_id, variant=variant) | |
| loaded_model = loaded_model.to(torch_device) | |
| new_output = loaded_model(**inputs_dict) | |
| assert loaded_model | |
| assert new_output.sample.shape == (4, 4, 16, 16) | |
| def test_load_sharded_checkpoint_from_hub_subfolder(self, repo_id, variant): | |
| _, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| loaded_model = self.model_class.from_pretrained(repo_id, subfolder="unet", variant=variant) | |
| loaded_model = loaded_model.to(torch_device) | |
| new_output = loaded_model(**inputs_dict) | |
| assert loaded_model | |
| assert new_output.sample.shape == (4, 4, 16, 16) | |
| def test_load_sharded_checkpoint_from_hub_local(self): | |
| _, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy") | |
| loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True) | |
| loaded_model = loaded_model.to(torch_device) | |
| new_output = loaded_model(**inputs_dict) | |
| assert loaded_model | |
| assert new_output.sample.shape == (4, 4, 16, 16) | |
| def test_load_sharded_checkpoint_from_hub_local_subfolder(self): | |
| _, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder") | |
| loaded_model = self.model_class.from_pretrained(ckpt_path, subfolder="unet", local_files_only=True) | |
| loaded_model = loaded_model.to(torch_device) | |
| new_output = loaded_model(**inputs_dict) | |
| assert loaded_model | |
| assert new_output.sample.shape == (4, 4, 16, 16) | |
| def test_load_sharded_checkpoint_device_map_from_hub(self, repo_id, variant): | |
| _, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| loaded_model = self.model_class.from_pretrained(repo_id, variant=variant, device_map="auto") | |
| new_output = loaded_model(**inputs_dict) | |
| assert loaded_model | |
| assert new_output.sample.shape == (4, 4, 16, 16) | |
| def test_load_sharded_checkpoint_device_map_from_hub_subfolder(self, repo_id, variant): | |
| _, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| loaded_model = self.model_class.from_pretrained(repo_id, variant=variant, subfolder="unet", device_map="auto") | |
| new_output = loaded_model(**inputs_dict) | |
| assert loaded_model | |
| assert new_output.sample.shape == (4, 4, 16, 16) | |
| def test_load_sharded_checkpoint_device_map_from_hub_local(self): | |
| _, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy") | |
| loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True, device_map="auto") | |
| new_output = loaded_model(**inputs_dict) | |
| assert loaded_model | |
| assert new_output.sample.shape == (4, 4, 16, 16) | |
| def test_load_sharded_checkpoint_device_map_from_hub_local_subfolder(self): | |
| _, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder") | |
| loaded_model = self.model_class.from_pretrained( | |
| ckpt_path, local_files_only=True, subfolder="unet", device_map="auto" | |
| ) | |
| new_output = loaded_model(**inputs_dict) | |
| assert loaded_model | |
| assert new_output.sample.shape == (4, 4, 16, 16) | |
| def test_load_attn_procs_raise_warning(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| # forward pass without LoRA | |
| with torch.no_grad(): | |
| non_lora_sample = model(**inputs_dict).sample | |
| unet_lora_config = get_unet_lora_config() | |
| model.add_adapter(unet_lora_config) | |
| assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet." | |
| # forward pass with LoRA | |
| with torch.no_grad(): | |
| lora_sample_1 = model(**inputs_dict).sample | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_attn_procs(tmpdirname) | |
| model.unload_lora() | |
| with self.assertWarns(FutureWarning) as warning: | |
| model.load_attn_procs(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")) | |
| warning_message = str(warning.warnings[0].message) | |
| assert "Using the `load_attn_procs()` method has been deprecated" in warning_message | |
| # import to still check for the rest of the stuff. | |
| assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet." | |
| with torch.no_grad(): | |
| lora_sample_2 = model(**inputs_dict).sample | |
| assert not torch.allclose( | |
| non_lora_sample, lora_sample_1, atol=1e-4, rtol=1e-4 | |
| ), "LoRA injected UNet should produce different results." | |
| assert torch.allclose( | |
| lora_sample_1, lora_sample_2, atol=1e-4, rtol=1e-4 | |
| ), "Loading from a saved checkpoint should produce identical results." | |
| def test_save_attn_procs_raise_warning(self): | |
| init_dict, _ = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| unet_lora_config = get_unet_lora_config() | |
| model.add_adapter(unet_lora_config) | |
| assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet." | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| with self.assertWarns(FutureWarning) as warning: | |
| model.save_attn_procs(tmpdirname) | |
| warning_message = str(warning.warnings[0].message) | |
| assert "Using the `save_attn_procs()` method has been deprecated" in warning_message | |
| class UNet2DConditionModelIntegrationTests(unittest.TestCase): | |
| def get_file_format(self, seed, shape): | |
| return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False): | |
| dtype = torch.float16 if fp16 else torch.float32 | |
| image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | |
| return image | |
| def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"): | |
| variant = "fp16" if fp16 else None | |
| torch_dtype = torch.float16 if fp16 else torch.float32 | |
| model = UNet2DConditionModel.from_pretrained( | |
| model_id, subfolder="unet", torch_dtype=torch_dtype, variant=variant | |
| ) | |
| model.to(torch_device).eval() | |
| return model | |
| def test_set_attention_slice_auto(self): | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_max_memory_allocated() | |
| torch.cuda.reset_peak_memory_stats() | |
| unet = self.get_unet_model() | |
| unet.set_attention_slice("auto") | |
| latents = self.get_latents(33) | |
| encoder_hidden_states = self.get_encoder_hidden_states(33) | |
| timestep = 1 | |
| with torch.no_grad(): | |
| _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| mem_bytes = torch.cuda.max_memory_allocated() | |
| assert mem_bytes < 5 * 10**9 | |
| def test_set_attention_slice_max(self): | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_max_memory_allocated() | |
| torch.cuda.reset_peak_memory_stats() | |
| unet = self.get_unet_model() | |
| unet.set_attention_slice("max") | |
| latents = self.get_latents(33) | |
| encoder_hidden_states = self.get_encoder_hidden_states(33) | |
| timestep = 1 | |
| with torch.no_grad(): | |
| _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| mem_bytes = torch.cuda.max_memory_allocated() | |
| assert mem_bytes < 5 * 10**9 | |
| def test_set_attention_slice_int(self): | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_max_memory_allocated() | |
| torch.cuda.reset_peak_memory_stats() | |
| unet = self.get_unet_model() | |
| unet.set_attention_slice(2) | |
| latents = self.get_latents(33) | |
| encoder_hidden_states = self.get_encoder_hidden_states(33) | |
| timestep = 1 | |
| with torch.no_grad(): | |
| _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| mem_bytes = torch.cuda.max_memory_allocated() | |
| assert mem_bytes < 5 * 10**9 | |
| def test_set_attention_slice_list(self): | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_max_memory_allocated() | |
| torch.cuda.reset_peak_memory_stats() | |
| # there are 32 sliceable layers | |
| slice_list = 16 * [2, 3] | |
| unet = self.get_unet_model() | |
| unet.set_attention_slice(slice_list) | |
| latents = self.get_latents(33) | |
| encoder_hidden_states = self.get_encoder_hidden_states(33) | |
| timestep = 1 | |
| with torch.no_grad(): | |
| _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| mem_bytes = torch.cuda.max_memory_allocated() | |
| assert mem_bytes < 5 * 10**9 | |
| def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False): | |
| dtype = torch.float16 if fp16 else torch.float32 | |
| hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | |
| return hidden_states | |
| def test_compvis_sd_v1_4(self, seed, timestep, expected_slice): | |
| model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4") | |
| latents = self.get_latents(seed) | |
| encoder_hidden_states = self.get_encoder_hidden_states(seed) | |
| timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
| with torch.no_grad(): | |
| sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| assert sample.shape == latents.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) | |
| def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice): | |
| model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True) | |
| latents = self.get_latents(seed, fp16=True) | |
| encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) | |
| timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
| with torch.no_grad(): | |
| sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| assert sample.shape == latents.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |
| def test_compvis_sd_v1_5(self, seed, timestep, expected_slice): | |
| model = self.get_unet_model(model_id="stable-diffusion-v1-5/stable-diffusion-v1-5") | |
| latents = self.get_latents(seed) | |
| encoder_hidden_states = self.get_encoder_hidden_states(seed) | |
| timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
| with torch.no_grad(): | |
| sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| assert sample.shape == latents.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) | |
| def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice): | |
| model = self.get_unet_model(model_id="stable-diffusion-v1-5/stable-diffusion-v1-5", fp16=True) | |
| latents = self.get_latents(seed, fp16=True) | |
| encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) | |
| timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
| with torch.no_grad(): | |
| sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| assert sample.shape == latents.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |
| def test_compvis_sd_inpaint(self, seed, timestep, expected_slice): | |
| model = self.get_unet_model(model_id="stable-diffusion-v1-5/stable-diffusion-inpainting") | |
| latents = self.get_latents(seed, shape=(4, 9, 64, 64)) | |
| encoder_hidden_states = self.get_encoder_hidden_states(seed) | |
| timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
| with torch.no_grad(): | |
| sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| assert sample.shape == (4, 4, 64, 64) | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) | |
| def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice): | |
| model = self.get_unet_model(model_id="stable-diffusion-v1-5/stable-diffusion-inpainting", fp16=True) | |
| latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True) | |
| encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) | |
| timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
| with torch.no_grad(): | |
| sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| assert sample.shape == (4, 4, 64, 64) | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |
| def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice): | |
| model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True) | |
| latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True) | |
| encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True) | |
| timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) | |
| with torch.no_grad(): | |
| sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample | |
| assert sample.shape == latents.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |