Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from diffusers.models import ModelMixin, UNet3DConditionModel | |
| from diffusers.utils import logging | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, skip_mps, torch_device | |
| from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
| enable_full_determinism() | |
| logger = logging.get_logger(__name__) | |
| class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = UNet3DConditionModel | |
| main_input_name = "sample" | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_channels = 4 | |
| num_frames = 4 | |
| sizes = (16, 16) | |
| noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
| time_step = torch.tensor([10]).to(torch_device) | |
| encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device) | |
| return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} | |
| def input_shape(self): | |
| return (4, 4, 16, 16) | |
| def output_shape(self): | |
| return (4, 4, 16, 16) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = { | |
| "block_out_channels": (4, 8), | |
| "norm_num_groups": 4, | |
| "down_block_types": ( | |
| "CrossAttnDownBlock3D", | |
| "DownBlock3D", | |
| ), | |
| "up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"), | |
| "cross_attention_dim": 8, | |
| "attention_head_dim": 2, | |
| "out_channels": 4, | |
| "in_channels": 4, | |
| "layers_per_block": 1, | |
| "sample_size": 16, | |
| } | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_xformers_enable_works(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.enable_xformers_memory_efficient_attention() | |
| assert ( | |
| model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ | |
| == "XFormersAttnProcessor" | |
| ), "xformers is not enabled" | |
| # Overriding to set `norm_num_groups` needs to be different for this model. | |
| def test_forward_with_norm_groups(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (32, 64) | |
| init_dict["norm_num_groups"] = 32 | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| # Overriding since the UNet3D outputs a different structure. | |
| def test_determinism(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| # Warmup pass when using mps (see #372) | |
| if torch_device == "mps" and isinstance(model, ModelMixin): | |
| model(**self.dummy_input) | |
| first = model(**inputs_dict) | |
| if isinstance(first, dict): | |
| first = first.sample | |
| second = model(**inputs_dict) | |
| if isinstance(second, dict): | |
| second = second.sample | |
| out_1 = first.cpu().numpy() | |
| out_2 = second.cpu().numpy() | |
| out_1 = out_1[~np.isnan(out_1)] | |
| out_2 = out_2[~np.isnan(out_2)] | |
| max_diff = np.amax(np.abs(out_1 - out_2)) | |
| self.assertLessEqual(max_diff, 1e-5) | |
| def test_model_attention_slicing(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (16, 32) | |
| init_dict["attention_head_dim"] = 8 | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| model.set_attention_slice("auto") | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| assert output is not None | |
| model.set_attention_slice("max") | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| assert output is not None | |
| model.set_attention_slice(2) | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| assert output is not None | |
| def test_feed_forward_chunking(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (32, 64) | |
| init_dict["norm_num_groups"] = 32 | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict)[0] | |
| model.enable_forward_chunking() | |
| with torch.no_grad(): | |
| output_2 = model(**inputs_dict)[0] | |
| self.assertEqual(output.shape, output_2.shape, "Shape doesn't match") | |
| assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2 | |