Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import copy | |
| import os | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from diffusers import MotionAdapter, UNet2DConditionModel, UNetMotionModel | |
| from diffusers.utils import logging | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| floats_tensor, | |
| torch_device, | |
| ) | |
| from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
| logger = logging.get_logger(__name__) | |
| enable_full_determinism() | |
| class UNetMotionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = UNetMotionModel | |
| main_input_name = "sample" | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_channels = 4 | |
| num_frames = 4 | |
| sizes = (16, 16) | |
| noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
| time_step = torch.tensor([10]).to(torch_device) | |
| encoder_hidden_states = floats_tensor((batch_size * num_frames, 4, 16)).to(torch_device) | |
| return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} | |
| def input_shape(self): | |
| return (4, 4, 16, 16) | |
| def output_shape(self): | |
| return (4, 4, 16, 16) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = { | |
| "block_out_channels": (16, 32), | |
| "norm_num_groups": 16, | |
| "down_block_types": ("CrossAttnDownBlockMotion", "DownBlockMotion"), | |
| "up_block_types": ("UpBlockMotion", "CrossAttnUpBlockMotion"), | |
| "cross_attention_dim": 16, | |
| "num_attention_heads": 2, | |
| "out_channels": 4, | |
| "in_channels": 4, | |
| "layers_per_block": 1, | |
| "sample_size": 16, | |
| } | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_from_unet2d(self): | |
| torch.manual_seed(0) | |
| unet2d = UNet2DConditionModel() | |
| torch.manual_seed(1) | |
| model = self.model_class.from_unet2d(unet2d) | |
| model_state_dict = model.state_dict() | |
| for param_name, param_value in unet2d.named_parameters(): | |
| self.assertTrue(torch.equal(model_state_dict[param_name], param_value)) | |
| def test_freeze_unet2d(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.freeze_unet2d_params() | |
| for param_name, param_value in model.named_parameters(): | |
| if "motion_modules" not in param_name: | |
| self.assertFalse(param_value.requires_grad) | |
| else: | |
| self.assertTrue(param_value.requires_grad) | |
| def test_loading_motion_adapter(self): | |
| model = self.model_class() | |
| adapter = MotionAdapter() | |
| model.load_motion_modules(adapter) | |
| for idx, down_block in enumerate(model.down_blocks): | |
| adapter_state_dict = adapter.down_blocks[idx].motion_modules.state_dict() | |
| for param_name, param_value in down_block.motion_modules.named_parameters(): | |
| self.assertTrue(torch.equal(adapter_state_dict[param_name], param_value)) | |
| for idx, up_block in enumerate(model.up_blocks): | |
| adapter_state_dict = adapter.up_blocks[idx].motion_modules.state_dict() | |
| for param_name, param_value in up_block.motion_modules.named_parameters(): | |
| self.assertTrue(torch.equal(adapter_state_dict[param_name], param_value)) | |
| mid_block_adapter_state_dict = adapter.mid_block.motion_modules.state_dict() | |
| for param_name, param_value in model.mid_block.motion_modules.named_parameters(): | |
| self.assertTrue(torch.equal(mid_block_adapter_state_dict[param_name], param_value)) | |
| def test_saving_motion_modules(self): | |
| torch.manual_seed(0) | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_motion_modules(tmpdirname) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors"))) | |
| adapter_loaded = MotionAdapter.from_pretrained(tmpdirname) | |
| torch.manual_seed(0) | |
| model_loaded = self.model_class(**init_dict) | |
| model_loaded.load_motion_modules(adapter_loaded) | |
| model_loaded.to(torch_device) | |
| with torch.no_grad(): | |
| output = model(**inputs_dict)[0] | |
| output_loaded = model_loaded(**inputs_dict)[0] | |
| max_diff = (output - output_loaded).abs().max().item() | |
| self.assertLessEqual(max_diff, 1e-4, "Models give different forward passes") | |
| def test_xformers_enable_works(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.enable_xformers_memory_efficient_attention() | |
| assert ( | |
| model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ | |
| == "XFormersAttnProcessor" | |
| ), "xformers is not enabled" | |
| def test_gradient_checkpointing_is_applied(self): | |
| expected_set = { | |
| "CrossAttnUpBlockMotion", | |
| "CrossAttnDownBlockMotion", | |
| "UNetMidBlockCrossAttnMotion", | |
| "UpBlockMotion", | |
| "Transformer2DModel", | |
| "DownBlockMotion", | |
| } | |
| super().test_gradient_checkpointing_is_applied(expected_set=expected_set) | |
| def test_feed_forward_chunking(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["block_out_channels"] = (32, 64) | |
| init_dict["norm_num_groups"] = 32 | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict)[0] | |
| model.enable_forward_chunking() | |
| with torch.no_grad(): | |
| output_2 = model(**inputs_dict)[0] | |
| self.assertEqual(output.shape, output_2.shape, "Shape doesn't match") | |
| assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2 | |
| def test_pickle(self): | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| with torch.no_grad(): | |
| sample = model(**inputs_dict).sample | |
| sample_copy = copy.copy(sample) | |
| assert (sample - sample_copy).abs().max() < 1e-4 | |
| def test_from_save_pretrained(self, expected_max_diff=5e-5): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname, safe_serialization=False) | |
| torch.manual_seed(0) | |
| new_model = self.model_class.from_pretrained(tmpdirname) | |
| new_model.to(torch_device) | |
| with torch.no_grad(): | |
| image = model(**inputs_dict) | |
| if isinstance(image, dict): | |
| image = image.to_tuple()[0] | |
| new_image = new_model(**inputs_dict) | |
| if isinstance(new_image, dict): | |
| new_image = new_image.to_tuple()[0] | |
| max_diff = (image - new_image).abs().max().item() | |
| self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes") | |
| def test_from_save_pretrained_variant(self, expected_max_diff=5e-5): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False) | |
| torch.manual_seed(0) | |
| new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16") | |
| # non-variant cannot be loaded | |
| with self.assertRaises(OSError) as error_context: | |
| self.model_class.from_pretrained(tmpdirname) | |
| # make sure that error message states what keys are missing | |
| assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception) | |
| new_model.to(torch_device) | |
| with torch.no_grad(): | |
| image = model(**inputs_dict) | |
| if isinstance(image, dict): | |
| image = image.to_tuple()[0] | |
| new_image = new_model(**inputs_dict) | |
| if isinstance(new_image, dict): | |
| new_image = new_image.to_tuple()[0] | |
| max_diff = (image - new_image).abs().max().item() | |
| self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes") | |
| def test_forward_with_norm_groups(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["norm_num_groups"] = 16 | |
| init_dict["block_out_channels"] = (16, 32) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.to_tuple()[0] | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_asymmetric_motion_model(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["layers_per_block"] = (2, 3) | |
| init_dict["transformer_layers_per_block"] = ((1, 2), (3, 4, 5)) | |
| init_dict["reverse_transformer_layers_per_block"] = ((7, 6, 7, 4), (4, 2, 2)) | |
| init_dict["temporal_transformer_layers_per_block"] = ((2, 5), (2, 3, 5)) | |
| init_dict["reverse_temporal_transformer_layers_per_block"] = ((5, 4, 3, 4), (3, 2, 2)) | |
| init_dict["num_attention_heads"] = (2, 4) | |
| init_dict["motion_num_attention_heads"] = (4, 4) | |
| init_dict["reverse_motion_num_attention_heads"] = (2, 2) | |
| init_dict["use_motion_mid_block"] = True | |
| init_dict["mid_block_layers"] = 2 | |
| init_dict["transformer_layers_per_mid_block"] = (1, 5) | |
| init_dict["temporal_transformer_layers_per_mid_block"] = (2, 4) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.to_tuple()[0] | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |