Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from parameterized import parameterized | |
| from diffusers.video_processor import VideoProcessor | |
| np.random.seed(0) | |
| torch.manual_seed(0) | |
| class VideoProcessorTest(unittest.TestCase): | |
| def get_dummy_sample(self, input_type): | |
| batch_size = 1 | |
| num_frames = 5 | |
| num_channels = 3 | |
| height = 8 | |
| width = 8 | |
| def generate_image(): | |
| return PIL.Image.fromarray(np.random.randint(0, 256, size=(height, width, num_channels)).astype("uint8")) | |
| def generate_4d_array(): | |
| return np.random.rand(num_frames, height, width, num_channels) | |
| def generate_5d_array(): | |
| return np.random.rand(batch_size, num_frames, height, width, num_channels) | |
| def generate_4d_tensor(): | |
| return torch.rand(num_frames, num_channels, height, width) | |
| def generate_5d_tensor(): | |
| return torch.rand(batch_size, num_frames, num_channels, height, width) | |
| if input_type == "list_images": | |
| sample = [generate_image() for _ in range(num_frames)] | |
| elif input_type == "list_list_images": | |
| sample = [[generate_image() for _ in range(num_frames)] for _ in range(num_frames)] | |
| elif input_type == "list_4d_np": | |
| sample = [generate_4d_array() for _ in range(num_frames)] | |
| elif input_type == "list_list_4d_np": | |
| sample = [[generate_4d_array() for _ in range(num_frames)] for _ in range(num_frames)] | |
| elif input_type == "list_5d_np": | |
| sample = [generate_5d_array() for _ in range(num_frames)] | |
| elif input_type == "5d_np": | |
| sample = generate_5d_array() | |
| elif input_type == "list_4d_pt": | |
| sample = [generate_4d_tensor() for _ in range(num_frames)] | |
| elif input_type == "list_list_4d_pt": | |
| sample = [[generate_4d_tensor() for _ in range(num_frames)] for _ in range(num_frames)] | |
| elif input_type == "list_5d_pt": | |
| sample = [generate_5d_tensor() for _ in range(num_frames)] | |
| elif input_type == "5d_pt": | |
| sample = generate_5d_tensor() | |
| return sample | |
| def to_np(self, video): | |
| # List of images. | |
| if isinstance(video[0], PIL.Image.Image): | |
| video = np.stack([np.array(i) for i in video], axis=0) | |
| # List of list of images. | |
| elif isinstance(video, list) and isinstance(video[0][0], PIL.Image.Image): | |
| frames = [] | |
| for vid in video: | |
| all_current_frames = np.stack([np.array(i) for i in vid], axis=0) | |
| frames.append(all_current_frames) | |
| video = np.stack([np.array(frame) for frame in frames], axis=0) | |
| # List of 4d/5d {ndarrays, torch tensors}. | |
| elif isinstance(video, list) and isinstance(video[0], (torch.Tensor, np.ndarray)): | |
| if isinstance(video[0], np.ndarray): | |
| video = np.stack(video, axis=0) if video[0].ndim == 4 else np.concatenate(video, axis=0) | |
| else: | |
| if video[0].ndim == 4: | |
| video = np.stack([i.cpu().numpy().transpose(0, 2, 3, 1) for i in video], axis=0) | |
| elif video[0].ndim == 5: | |
| video = np.concatenate([i.cpu().numpy().transpose(0, 1, 3, 4, 2) for i in video], axis=0) | |
| # List of list of 4d/5d {ndarrays, torch tensors}. | |
| elif ( | |
| isinstance(video, list) | |
| and isinstance(video[0], list) | |
| and isinstance(video[0][0], (torch.Tensor, np.ndarray)) | |
| ): | |
| all_frames = [] | |
| for list_of_videos in video: | |
| temp_frames = [] | |
| for vid in list_of_videos: | |
| if vid.ndim == 4: | |
| current_vid_frames = np.stack( | |
| [i if isinstance(i, np.ndarray) else i.cpu().numpy().transpose(1, 2, 0) for i in vid], | |
| axis=0, | |
| ) | |
| elif vid.ndim == 5: | |
| current_vid_frames = np.concatenate( | |
| [i if isinstance(i, np.ndarray) else i.cpu().numpy().transpose(0, 2, 3, 1) for i in vid], | |
| axis=0, | |
| ) | |
| temp_frames.append(current_vid_frames) | |
| temp_frames = np.stack(temp_frames, axis=0) | |
| all_frames.append(temp_frames) | |
| video = np.concatenate(all_frames, axis=0) | |
| # Just 5d {ndarrays, torch tensors}. | |
| elif isinstance(video, (torch.Tensor, np.ndarray)) and video.ndim == 5: | |
| video = video if isinstance(video, np.ndarray) else video.cpu().numpy().transpose(0, 1, 3, 4, 2) | |
| return video | |
| def test_video_processor_pil(self, input_type): | |
| video_processor = VideoProcessor(do_resize=False, do_normalize=True) | |
| input = self.get_dummy_sample(input_type=input_type) | |
| for output_type in ["pt", "np", "pil"]: | |
| out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type) | |
| out_np = self.to_np(out) | |
| input_np = self.to_np(input).astype("float32") / 255.0 if output_type != "pil" else self.to_np(input) | |
| assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}" | |
| def test_video_processor_np(self, input_type): | |
| video_processor = VideoProcessor(do_resize=False, do_normalize=True) | |
| input = self.get_dummy_sample(input_type=input_type) | |
| for output_type in ["pt", "np", "pil"]: | |
| out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type) | |
| out_np = self.to_np(out) | |
| input_np = ( | |
| (self.to_np(input) * 255.0).round().astype("uint8") if output_type == "pil" else self.to_np(input) | |
| ) | |
| assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}" | |
| def test_video_processor_pt(self, input_type): | |
| video_processor = VideoProcessor(do_resize=False, do_normalize=True) | |
| input = self.get_dummy_sample(input_type=input_type) | |
| for output_type in ["pt", "np", "pil"]: | |
| out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type) | |
| out_np = self.to_np(out) | |
| input_np = ( | |
| (self.to_np(input) * 255.0).round().astype("uint8") if output_type == "pil" else self.to_np(input) | |
| ) | |
| assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}" | |