Spaces:
Runtime error
Runtime error
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import AutoTokenizer, UMT5EncoderModel | |
| from diffusers import AuraFlowPipeline, AuraFlowTransformer2DModel, AutoencoderKL, FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils.testing_utils import ( | |
| torch_device, | |
| ) | |
| from ..test_pipelines_common import ( | |
| PipelineTesterMixin, | |
| check_qkv_fusion_matches_attn_procs_length, | |
| check_qkv_fusion_processors_exist, | |
| ) | |
| class AuraFlowPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
| pipeline_class = AuraFlowPipeline | |
| params = frozenset( | |
| [ | |
| "prompt", | |
| "height", | |
| "width", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| ] | |
| ) | |
| batch_params = frozenset(["prompt", "negative_prompt"]) | |
| test_layerwise_casting = True | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = AuraFlowTransformer2DModel( | |
| sample_size=32, | |
| patch_size=2, | |
| in_channels=4, | |
| num_mmdit_layers=1, | |
| num_single_dit_layers=1, | |
| attention_head_dim=8, | |
| num_attention_heads=4, | |
| caption_projection_dim=32, | |
| joint_attention_dim=32, | |
| out_channels=4, | |
| pos_embed_max_size=256, | |
| ) | |
| text_encoder = UMT5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-umt5") | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| sample_size=32, | |
| ) | |
| scheduler = FlowMatchEulerDiscreteScheduler() | |
| return { | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "transformer": transformer, | |
| "vae": vae, | |
| } | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "output_type": "np", | |
| "height": None, | |
| "width": None, | |
| } | |
| return inputs | |
| def test_aura_flow_prompt_embeds(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_with_prompt = pipe(**inputs).images[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = inputs.pop("prompt") | |
| do_classifier_free_guidance = inputs["guidance_scale"] > 1 | |
| ( | |
| prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_embeds, | |
| negative_prompt_attention_mask, | |
| ) = pipe.encode_prompt( | |
| prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| device=torch_device, | |
| ) | |
| output_with_embeds = pipe( | |
| prompt_embeds=prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| **inputs, | |
| ).images[0] | |
| max_diff = np.abs(output_with_prompt - output_with_embeds).max() | |
| assert max_diff < 1e-4 | |
| def test_attention_slicing_forward_pass(self): | |
| # Attention slicing needs to implemented differently for this because how single DiT and MMDiT | |
| # blocks interfere with each other. | |
| return | |
| def test_fused_qkv_projections(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| original_image_slice = image[0, -3:, -3:, -1] | |
| # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added | |
| # to the pipeline level. | |
| pipe.transformer.fuse_qkv_projections() | |
| assert check_qkv_fusion_processors_exist( | |
| pipe.transformer | |
| ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." | |
| assert check_qkv_fusion_matches_attn_procs_length( | |
| pipe.transformer, pipe.transformer.original_attn_processors | |
| ), "Something wrong with the attention processors concerning the fused QKV projections." | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| image_slice_fused = image[0, -3:, -3:, -1] | |
| pipe.transformer.unfuse_qkv_projections() | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| image_slice_disabled = image[0, -3:, -3:, -1] | |
| assert np.allclose( | |
| original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 | |
| ), "Fusion of QKV projections shouldn't affect the outputs." | |
| assert np.allclose( | |
| image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 | |
| ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." | |
| assert np.allclose( | |
| original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 | |
| ), "Original outputs should match when fused QKV projections are disabled." | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| pass | |