Spaces:
Runtime error
Runtime error
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from torch.backends.cuda import sdp_kernel | |
| from diffusers import ( | |
| CMStochasticIterativeScheduler, | |
| ConsistencyModelPipeline, | |
| UNet2DModel, | |
| ) | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| nightly, | |
| require_torch_2, | |
| require_torch_gpu, | |
| torch_device, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class ConsistencyModelPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = ConsistencyModelPipeline | |
| params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS | |
| batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS | |
| # Override required_optional_params to remove num_images_per_prompt | |
| required_optional_params = frozenset( | |
| [ | |
| "num_inference_steps", | |
| "generator", | |
| "latents", | |
| "output_type", | |
| "return_dict", | |
| "callback", | |
| "callback_steps", | |
| ] | |
| ) | |
| def dummy_uncond_unet(self): | |
| unet = UNet2DModel.from_pretrained( | |
| "diffusers/consistency-models-test", | |
| subfolder="test_unet", | |
| ) | |
| return unet | |
| def dummy_cond_unet(self): | |
| unet = UNet2DModel.from_pretrained( | |
| "diffusers/consistency-models-test", | |
| subfolder="test_unet_class_cond", | |
| ) | |
| return unet | |
| def get_dummy_components(self, class_cond=False): | |
| if class_cond: | |
| unet = self.dummy_cond_unet | |
| else: | |
| unet = self.dummy_uncond_unet | |
| # Default to CM multistep sampler | |
| scheduler = CMStochasticIterativeScheduler( | |
| num_train_timesteps=40, | |
| sigma_min=0.002, | |
| sigma_max=80.0, | |
| ) | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "batch_size": 1, | |
| "num_inference_steps": None, | |
| "timesteps": [22, 0], | |
| "generator": generator, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_consistency_model_pipeline_multistep(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = ConsistencyModelPipeline(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| assert image.shape == (1, 32, 32, 3) | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
| def test_consistency_model_pipeline_multistep_class_cond(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components(class_cond=True) | |
| pipe = ConsistencyModelPipeline(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["class_labels"] = 0 | |
| image = pipe(**inputs).images | |
| assert image.shape == (1, 32, 32, 3) | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
| def test_consistency_model_pipeline_onestep(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = ConsistencyModelPipeline(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["num_inference_steps"] = 1 | |
| inputs["timesteps"] = None | |
| image = pipe(**inputs).images | |
| assert image.shape == (1, 32, 32, 3) | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
| def test_consistency_model_pipeline_onestep_class_cond(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components(class_cond=True) | |
| pipe = ConsistencyModelPipeline(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["num_inference_steps"] = 1 | |
| inputs["timesteps"] = None | |
| inputs["class_labels"] = 0 | |
| image = pipe(**inputs).images | |
| assert image.shape == (1, 32, 32, 3) | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
| class ConsistencyModelPipelineSlowTests(unittest.TestCase): | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_inputs(self, seed=0, get_fixed_latents=False, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)): | |
| generator = torch.manual_seed(seed) | |
| inputs = { | |
| "num_inference_steps": None, | |
| "timesteps": [22, 0], | |
| "class_labels": 0, | |
| "generator": generator, | |
| "output_type": "np", | |
| } | |
| if get_fixed_latents: | |
| latents = self.get_fixed_latents(seed=seed, device=device, dtype=dtype, shape=shape) | |
| inputs["latents"] = latents | |
| return inputs | |
| def get_fixed_latents(self, seed=0, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)): | |
| if isinstance(device, str): | |
| device = torch.device(device) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| return latents | |
| def test_consistency_model_cd_multistep(self): | |
| unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") | |
| scheduler = CMStochasticIterativeScheduler( | |
| num_train_timesteps=40, | |
| sigma_min=0.002, | |
| sigma_max=80.0, | |
| ) | |
| pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) | |
| pipe.to(torch_device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs() | |
| image = pipe(**inputs).images | |
| assert image.shape == (1, 64, 64, 3) | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.0146, 0.0158, 0.0092, 0.0086, 0.0000, 0.0000, 0.0000, 0.0000, 0.0058]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
| def test_consistency_model_cd_onestep(self): | |
| unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") | |
| scheduler = CMStochasticIterativeScheduler( | |
| num_train_timesteps=40, | |
| sigma_min=0.002, | |
| sigma_max=80.0, | |
| ) | |
| pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) | |
| pipe.to(torch_device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs() | |
| inputs["num_inference_steps"] = 1 | |
| inputs["timesteps"] = None | |
| image = pipe(**inputs).images | |
| assert image.shape == (1, 64, 64, 3) | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.0059, 0.0003, 0.0000, 0.0023, 0.0052, 0.0007, 0.0165, 0.0081, 0.0095]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
| def test_consistency_model_cd_multistep_flash_attn(self): | |
| unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") | |
| scheduler = CMStochasticIterativeScheduler( | |
| num_train_timesteps=40, | |
| sigma_min=0.002, | |
| sigma_max=80.0, | |
| ) | |
| pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) | |
| pipe.to(torch_device=torch_device, torch_dtype=torch.float16) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(get_fixed_latents=True, device=torch_device) | |
| # Ensure usage of flash attention in torch 2.0 | |
| with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): | |
| image = pipe(**inputs).images | |
| assert image.shape == (1, 64, 64, 3) | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.1845, 0.1371, 0.1211, 0.2035, 0.1954, 0.1323, 0.1773, 0.1593, 0.1314]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
| def test_consistency_model_cd_onestep_flash_attn(self): | |
| unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") | |
| scheduler = CMStochasticIterativeScheduler( | |
| num_train_timesteps=40, | |
| sigma_min=0.002, | |
| sigma_max=80.0, | |
| ) | |
| pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) | |
| pipe.to(torch_device=torch_device, torch_dtype=torch.float16) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(get_fixed_latents=True, device=torch_device) | |
| inputs["num_inference_steps"] = 1 | |
| inputs["timesteps"] = None | |
| # Ensure usage of flash attention in torch 2.0 | |
| with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): | |
| image = pipe(**inputs).images | |
| assert image.shape == (1, 64, 64, 3) | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.1623, 0.2009, 0.2387, 0.1731, 0.1168, 0.1202, 0.2031, 0.1327, 0.2447]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |