Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 Harutatsu Akiyama, Jinbin Bai, and HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import random | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextConfig, | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| CLIPVisionConfig, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from diffusers import ( | |
| AutoencoderKL, | |
| ControlNetModel, | |
| EulerDiscreteScheduler, | |
| StableDiffusionXLControlNetInpaintPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| floats_tensor, | |
| require_torch_gpu, | |
| torch_device, | |
| ) | |
| from ..pipeline_params import ( | |
| IMAGE_TO_IMAGE_IMAGE_PARAMS, | |
| TEXT_TO_IMAGE_BATCH_PARAMS, | |
| TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
| TEXT_TO_IMAGE_IMAGE_PARAMS, | |
| TEXT_TO_IMAGE_PARAMS, | |
| ) | |
| from ..test_pipelines_common import ( | |
| PipelineKarrasSchedulerTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineTesterMixin, | |
| ) | |
| enable_full_determinism() | |
| class ControlNetPipelineSDXLFastTests( | |
| PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase | |
| ): | |
| pipeline_class = StableDiffusionXLControlNetInpaintPipeline | |
| params = TEXT_TO_IMAGE_PARAMS | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = frozenset(IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"mask_image", "control_image"})) | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union( | |
| { | |
| "add_text_embeds", | |
| "add_time_ids", | |
| "mask", | |
| "masked_image_latents", | |
| } | |
| ) | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| ) | |
| torch.manual_seed(0) | |
| controlnet = ControlNetModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| conditioning_embedding_out_channels=(16, 32), | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| ) | |
| scheduler = EulerDiscreteScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| steps_offset=1, | |
| beta_schedule="scaled_linear", | |
| timestep_spacing="leading", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| # SD2-specific config below | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| torch.manual_seed(0) | |
| text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| image_encoder_config = CLIPVisionConfig( | |
| hidden_size=32, | |
| image_size=224, | |
| projection_dim=32, | |
| intermediate_size=37, | |
| num_attention_heads=4, | |
| num_channels=3, | |
| num_hidden_layers=5, | |
| patch_size=14, | |
| ) | |
| image_encoder = CLIPVisionModelWithProjection(image_encoder_config) | |
| feature_extractor = CLIPImageProcessor( | |
| crop_size=224, | |
| do_center_crop=True, | |
| do_normalize=True, | |
| do_resize=True, | |
| image_mean=[0.48145466, 0.4578275, 0.40821073], | |
| image_std=[0.26862954, 0.26130258, 0.27577711], | |
| resample=3, | |
| size=224, | |
| ) | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer_2": tokenizer_2, | |
| "image_encoder": image_encoder, | |
| "feature_extractor": feature_extractor, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0, img_res=64): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Get random floats in [0, 1] as image | |
| image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
| image = image.cpu().permute(0, 2, 3, 1)[0] | |
| mask_image = torch.ones_like(image) | |
| controlnet_embedder_scale_factor = 2 | |
| control_image = ( | |
| floats_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| rng=random.Random(seed), | |
| ) | |
| .to(device) | |
| .cpu() | |
| ) | |
| control_image = control_image.cpu().permute(0, 2, 3, 1)[0] | |
| # Convert image and mask_image to [0, 255] | |
| image = 255 * image | |
| mask_image = 255 * mask_image | |
| control_image = 255 * control_image | |
| # Convert to PIL image | |
| init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res)) | |
| mask_image = Image.fromarray(np.uint8(mask_image)).convert("L").resize((img_res, img_res)) | |
| control_image = Image.fromarray(np.uint8(control_image)).convert("RGB").resize((img_res, img_res)) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| "image": init_image, | |
| "mask_image": mask_image, | |
| "control_image": control_image, | |
| } | |
| return inputs | |
| def test_attention_slicing_forward_pass(self): | |
| return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
| def test_stable_diffusion_xl_offloads(self): | |
| pipes = [] | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components).to(torch_device) | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_model_cpu_offload() | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_sequential_cpu_offload() | |
| pipes.append(sd_pipe) | |
| image_slices = [] | |
| for pipe in pipes: | |
| pipe.unet.set_default_attn_processor() | |
| inputs = self.get_dummy_inputs(torch_device) | |
| image = pipe(**inputs).images | |
| image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
| assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
| assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
| def test_stable_diffusion_xl_multi_prompts(self): | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components).to(torch_device) | |
| # forward with single prompt | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = sd_pipe(**inputs) | |
| image_slice_1 = output.images[0, -3:, -3:, -1] | |
| # forward with same prompt duplicated | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt_2"] = inputs["prompt"] | |
| output = sd_pipe(**inputs) | |
| image_slice_2 = output.images[0, -3:, -3:, -1] | |
| # ensure the results are equal | |
| assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
| # forward with different prompt | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt_2"] = "different prompt" | |
| output = sd_pipe(**inputs) | |
| image_slice_3 = output.images[0, -3:, -3:, -1] | |
| # ensure the results are not equal | |
| assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 | |
| # manually set a negative_prompt | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["negative_prompt"] = "negative prompt" | |
| output = sd_pipe(**inputs) | |
| image_slice_1 = output.images[0, -3:, -3:, -1] | |
| # forward with same negative_prompt duplicated | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["negative_prompt"] = "negative prompt" | |
| inputs["negative_prompt_2"] = inputs["negative_prompt"] | |
| output = sd_pipe(**inputs) | |
| image_slice_2 = output.images[0, -3:, -3:, -1] | |
| # ensure the results are equal | |
| assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
| # forward with different negative_prompt | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["negative_prompt"] = "negative prompt" | |
| inputs["negative_prompt_2"] = "different negative prompt" | |
| output = sd_pipe(**inputs) | |
| image_slice_3 = output.images[0, -3:, -3:, -1] | |
| # ensure the results are not equal | |
| assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 | |
| def test_controlnet_sdxl_guess(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe = sd_pipe.to(device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["guess_mode"] = True | |
| output = sd_pipe(**inputs) | |
| image_slice = output.images[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.5460, 0.4943, 0.4635, 0.5832, 0.5366, 0.4815, 0.6034, 0.5741, 0.4341]) | |
| # make sure that it's equal | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4 | |
| # TODO(Patrick, Sayak) - skip for now as this requires more refiner tests | |
| def test_save_load_optional_components(self): | |
| pass | |
| def test_float16_inference(self): | |
| super().test_float16_inference(expected_max_diff=5e-1) | |