Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import copy | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
| from diffusers import ( | |
| AutoencoderKL, | |
| ControlNetModel, | |
| EulerDiscreteScheduler, | |
| HeunDiscreteScheduler, | |
| LCMScheduler, | |
| StableDiffusionXLControlNetPipeline, | |
| StableDiffusionXLImg2ImgPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D | |
| from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| backend_empty_cache, | |
| enable_full_determinism, | |
| load_image, | |
| require_torch_accelerator, | |
| slow, | |
| torch_device, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..pipeline_params import ( | |
| IMAGE_TO_IMAGE_IMAGE_PARAMS, | |
| TEXT_TO_IMAGE_BATCH_PARAMS, | |
| TEXT_TO_IMAGE_IMAGE_PARAMS, | |
| TEXT_TO_IMAGE_PARAMS, | |
| ) | |
| from ..test_pipelines_common import ( | |
| IPAdapterTesterMixin, | |
| PipelineKarrasSchedulerTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineTesterMixin, | |
| SDXLOptionalComponentsTesterMixin, | |
| ) | |
| enable_full_determinism() | |
| class StableDiffusionXLControlNetPipelineFastTests( | |
| IPAdapterTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineKarrasSchedulerTesterMixin, | |
| PipelineTesterMixin, | |
| SDXLOptionalComponentsTesterMixin, | |
| unittest.TestCase, | |
| ): | |
| pipeline_class = StableDiffusionXLControlNetPipeline | |
| params = TEXT_TO_IMAGE_PARAMS | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| test_layerwise_casting = True | |
| def get_dummy_components(self, time_cond_proj_dim=None): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| time_cond_proj_dim=time_cond_proj_dim, | |
| ) | |
| torch.manual_seed(0) | |
| controlnet = ControlNetModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| conditioning_embedding_out_channels=(16, 32), | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| ) | |
| torch.manual_seed(0) | |
| scheduler = EulerDiscreteScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| steps_offset=1, | |
| beta_schedule="scaled_linear", | |
| timestep_spacing="leading", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| # SD2-specific config below | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer_2": tokenizer_2, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| controlnet_embedder_scale_factor = 2 | |
| image = randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| "image": image, | |
| } | |
| return inputs | |
| def test_attention_slicing_forward_pass(self): | |
| return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
| def test_ip_adapter(self, from_ssd1b=False, expected_pipe_slice=None): | |
| if not from_ssd1b: | |
| expected_pipe_slice = None | |
| if torch_device == "cpu": | |
| expected_pipe_slice = np.array( | |
| [0.7335, 0.5866, 0.5623, 0.6242, 0.5751, 0.5999, 0.4091, 0.4590, 0.5054] | |
| ) | |
| return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
| def test_save_load_optional_components(self): | |
| self._test_save_load_optional_components() | |
| def test_stable_diffusion_xl_offloads(self): | |
| pipes = [] | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components).to(torch_device) | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_model_cpu_offload() | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_sequential_cpu_offload() | |
| pipes.append(sd_pipe) | |
| image_slices = [] | |
| for pipe in pipes: | |
| pipe.unet.set_default_attn_processor() | |
| inputs = self.get_dummy_inputs(torch_device) | |
| image = pipe(**inputs).images | |
| image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
| assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
| assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
| def test_stable_diffusion_xl_multi_prompts(self): | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components).to(torch_device) | |
| # forward with single prompt | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = sd_pipe(**inputs) | |
| image_slice_1 = output.images[0, -3:, -3:, -1] | |
| # forward with same prompt duplicated | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt_2"] = inputs["prompt"] | |
| output = sd_pipe(**inputs) | |
| image_slice_2 = output.images[0, -3:, -3:, -1] | |
| # ensure the results are equal | |
| assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
| # forward with different prompt | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt_2"] = "different prompt" | |
| output = sd_pipe(**inputs) | |
| image_slice_3 = output.images[0, -3:, -3:, -1] | |
| # ensure the results are not equal | |
| assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 | |
| # manually set a negative_prompt | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["negative_prompt"] = "negative prompt" | |
| output = sd_pipe(**inputs) | |
| image_slice_1 = output.images[0, -3:, -3:, -1] | |
| # forward with same negative_prompt duplicated | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["negative_prompt"] = "negative prompt" | |
| inputs["negative_prompt_2"] = inputs["negative_prompt"] | |
| output = sd_pipe(**inputs) | |
| image_slice_2 = output.images[0, -3:, -3:, -1] | |
| # ensure the results are equal | |
| assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
| # forward with different negative_prompt | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["negative_prompt"] = "negative prompt" | |
| inputs["negative_prompt_2"] = "different negative prompt" | |
| output = sd_pipe(**inputs) | |
| image_slice_3 = output.images[0, -3:, -3:, -1] | |
| # ensure the results are not equal | |
| assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 | |
| # Copied from test_stable_diffusion_xl.py | |
| def test_stable_diffusion_xl_prompt_embeds(self): | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| # forward without prompt embeds | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt"] = 2 * [inputs["prompt"]] | |
| inputs["num_images_per_prompt"] = 2 | |
| output = sd_pipe(**inputs) | |
| image_slice_1 = output.images[0, -3:, -3:, -1] | |
| # forward with prompt embeds | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = 2 * [inputs.pop("prompt")] | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = sd_pipe.encode_prompt(prompt) | |
| output = sd_pipe( | |
| **inputs, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| ) | |
| image_slice_2 = output.images[0, -3:, -3:, -1] | |
| # make sure that it's equal | |
| assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
| def test_controlnet_sdxl_guess(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe = sd_pipe.to(device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["guess_mode"] = True | |
| output = sd_pipe(**inputs) | |
| image_slice = output.images[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.7335, 0.5866, 0.5623, 0.6242, 0.5751, 0.5999, 0.4091, 0.4590, 0.5054]) | |
| # make sure that it's equal | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4 | |
| def test_controlnet_sdxl_lcm(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components(time_cond_proj_dim=256) | |
| sd_pipe = StableDiffusionXLControlNetPipeline(**components) | |
| sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = sd_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.7820, 0.6195, 0.6193, 0.7045, 0.6706, 0.5837, 0.4147, 0.5232, 0.4868]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| # Copied from test_stable_diffusion_xl.py:test_stable_diffusion_two_xl_mixture_of_denoiser_fast | |
| # with `StableDiffusionXLControlNetPipeline` instead of `StableDiffusionXLPipeline` | |
| def test_controlnet_sdxl_two_mixture_of_denoiser_fast(self): | |
| components = self.get_dummy_components() | |
| pipe_1 = StableDiffusionXLControlNetPipeline(**components).to(torch_device) | |
| pipe_1.unet.set_default_attn_processor() | |
| components_without_controlnet = {k: v for k, v in components.items() if k != "controlnet"} | |
| pipe_2 = StableDiffusionXLImg2ImgPipeline(**components_without_controlnet).to(torch_device) | |
| pipe_2.unet.set_default_attn_processor() | |
| def assert_run_mixture( | |
| num_steps, | |
| split, | |
| scheduler_cls_orig, | |
| expected_tss, | |
| num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, | |
| ): | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = num_steps | |
| class scheduler_cls(scheduler_cls_orig): | |
| pass | |
| pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) | |
| pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) | |
| # Let's retrieve the number of timesteps we want to use | |
| pipe_1.scheduler.set_timesteps(num_steps) | |
| expected_steps = pipe_1.scheduler.timesteps.tolist() | |
| if pipe_1.scheduler.order == 2: | |
| expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) | |
| expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split, expected_tss)) | |
| expected_steps = expected_steps_1 + expected_steps_2 | |
| else: | |
| expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) | |
| expected_steps_2 = list(filter(lambda ts: ts < split, expected_tss)) | |
| # now we monkey patch step `done_steps` | |
| # list into the step function for testing | |
| done_steps = [] | |
| old_step = copy.copy(scheduler_cls.step) | |
| def new_step(self, *args, **kwargs): | |
| done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t` | |
| return old_step(self, *args, **kwargs) | |
| scheduler_cls.step = new_step | |
| inputs_1 = { | |
| **inputs, | |
| **{ | |
| "denoising_end": 1.0 - (split / num_train_timesteps), | |
| "output_type": "latent", | |
| }, | |
| } | |
| latents = pipe_1(**inputs_1).images[0] | |
| assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" | |
| inputs_2 = { | |
| **inputs, | |
| **{ | |
| "denoising_start": 1.0 - (split / num_train_timesteps), | |
| "image": latents, | |
| }, | |
| } | |
| pipe_2(**inputs_2).images[0] | |
| assert expected_steps_2 == done_steps[len(expected_steps_1) :] | |
| assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" | |
| steps = 10 | |
| for split in [300, 700]: | |
| for scheduler_cls_timesteps in [ | |
| (EulerDiscreteScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]), | |
| ( | |
| HeunDiscreteScheduler, | |
| [ | |
| 901.0, | |
| 801.0, | |
| 801.0, | |
| 701.0, | |
| 701.0, | |
| 601.0, | |
| 601.0, | |
| 501.0, | |
| 501.0, | |
| 401.0, | |
| 401.0, | |
| 301.0, | |
| 301.0, | |
| 201.0, | |
| 201.0, | |
| 101.0, | |
| 101.0, | |
| 1.0, | |
| 1.0, | |
| ], | |
| ), | |
| ]: | |
| assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1]) | |
| class StableDiffusionXLMultiControlNetPipelineFastTests( | |
| PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase | |
| ): | |
| pipeline_class = StableDiffusionXLControlNetPipeline | |
| params = TEXT_TO_IMAGE_PARAMS | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| ) | |
| torch.manual_seed(0) | |
| def init_weights(m): | |
| if isinstance(m, torch.nn.Conv2d): | |
| torch.nn.init.normal_(m.weight) | |
| m.bias.data.fill_(1.0) | |
| controlnet1 = ControlNetModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| conditioning_embedding_out_channels=(16, 32), | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| ) | |
| controlnet1.controlnet_down_blocks.apply(init_weights) | |
| torch.manual_seed(0) | |
| controlnet2 = ControlNetModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| conditioning_embedding_out_channels=(16, 32), | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| ) | |
| controlnet2.controlnet_down_blocks.apply(init_weights) | |
| torch.manual_seed(0) | |
| scheduler = EulerDiscreteScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| steps_offset=1, | |
| beta_schedule="scaled_linear", | |
| timestep_spacing="leading", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| # SD2-specific config below | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| controlnet = MultiControlNetModel([controlnet1, controlnet2]) | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer_2": tokenizer_2, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| controlnet_embedder_scale_factor = 2 | |
| images = [ | |
| randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ), | |
| randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ), | |
| ] | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| "image": images, | |
| } | |
| return inputs | |
| def test_control_guidance_switch(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| scale = 10.0 | |
| steps = 4 | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_1 = pipe(**inputs)[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] | |
| # make sure that all outputs are different | |
| assert np.sum(np.abs(output_1 - output_2)) > 1e-3 | |
| assert np.sum(np.abs(output_1 - output_3)) > 1e-3 | |
| assert np.sum(np.abs(output_1 - output_4)) > 1e-3 | |
| def test_attention_slicing_forward_pass(self): | |
| return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
| def test_save_load_optional_components(self): | |
| return self._test_save_load_optional_components() | |
| class StableDiffusionXLMultiControlNetOneModelPipelineFastTests( | |
| PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase | |
| ): | |
| pipeline_class = StableDiffusionXLControlNetPipeline | |
| params = TEXT_TO_IMAGE_PARAMS | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| ) | |
| torch.manual_seed(0) | |
| def init_weights(m): | |
| if isinstance(m, torch.nn.Conv2d): | |
| torch.nn.init.normal_(m.weight) | |
| m.bias.data.fill_(1.0) | |
| controlnet = ControlNetModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| conditioning_embedding_out_channels=(16, 32), | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| ) | |
| controlnet.controlnet_down_blocks.apply(init_weights) | |
| torch.manual_seed(0) | |
| scheduler = EulerDiscreteScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| steps_offset=1, | |
| beta_schedule="scaled_linear", | |
| timestep_spacing="leading", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| # SD2-specific config below | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| controlnet = MultiControlNetModel([controlnet]) | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer_2": tokenizer_2, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| controlnet_embedder_scale_factor = 2 | |
| images = [ | |
| randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ), | |
| ] | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| "image": images, | |
| } | |
| return inputs | |
| def test_control_guidance_switch(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| scale = 10.0 | |
| steps = 4 | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_1 = pipe(**inputs)[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_3 = pipe( | |
| **inputs, | |
| control_guidance_start=[0.1], | |
| control_guidance_end=[0.2], | |
| )[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0] | |
| # make sure that all outputs are different | |
| assert np.sum(np.abs(output_1 - output_2)) > 1e-3 | |
| assert np.sum(np.abs(output_1 - output_3)) > 1e-3 | |
| assert np.sum(np.abs(output_1 - output_4)) > 1e-3 | |
| def test_attention_slicing_forward_pass(self): | |
| return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
| def test_save_load_optional_components(self): | |
| self._test_save_load_optional_components() | |
| def test_negative_conditions(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| image = pipe(**inputs).images | |
| image_slice_without_neg_cond = image[0, -3:, -3:, -1] | |
| image = pipe( | |
| **inputs, | |
| negative_original_size=(512, 512), | |
| negative_crops_coords_top_left=(0, 0), | |
| negative_target_size=(1024, 1024), | |
| ).images | |
| image_slice_with_neg_cond = image[0, -3:, -3:, -1] | |
| self.assertTrue(np.abs(image_slice_without_neg_cond - image_slice_with_neg_cond).max() > 1e-2) | |
| class ControlNetSDXLPipelineSlowTests(unittest.TestCase): | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def test_canny(self): | |
| controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") | |
| pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet | |
| ) | |
| pipe.enable_sequential_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "bird" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
| ) | |
| images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images | |
| assert images[0].shape == (768, 512, 3) | |
| original_image = images[0, -3:, -3:, -1].flatten() | |
| expected_image = np.array([0.4185, 0.4127, 0.4089, 0.4046, 0.4115, 0.4096, 0.4081, 0.4112, 0.3913]) | |
| assert np.allclose(original_image, expected_image, atol=1e-04) | |
| def test_depth(self): | |
| controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0") | |
| pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet | |
| ) | |
| pipe.enable_sequential_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "Stormtrooper's lecture" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" | |
| ) | |
| images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images | |
| assert images[0].shape == (512, 512, 3) | |
| original_image = images[0, -3:, -3:, -1].flatten() | |
| expected_image = np.array([0.4399, 0.5112, 0.5478, 0.4314, 0.472, 0.4823, 0.4647, 0.4957, 0.4853]) | |
| assert np.allclose(original_image, expected_image, atol=1e-04) | |
| class StableDiffusionSSD1BControlNetPipelineFastTests(StableDiffusionXLControlNetPipelineFastTests): | |
| def test_controlnet_sdxl_guess(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe = sd_pipe.to(device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["guess_mode"] = True | |
| output = sd_pipe(**inputs) | |
| image_slice = output.images[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.7212, 0.5890, 0.5491, 0.6425, 0.5970, 0.6091, 0.4418, 0.4556, 0.5032]) | |
| # make sure that it's equal | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4 | |
| def test_ip_adapter(self): | |
| expected_pipe_slice = None | |
| if torch_device == "cpu": | |
| expected_pipe_slice = np.array([0.7212, 0.5890, 0.5491, 0.6425, 0.5970, 0.6091, 0.4418, 0.4556, 0.5032]) | |
| return super().test_ip_adapter(from_ssd1b=True, expected_pipe_slice=expected_pipe_slice) | |
| def test_controlnet_sdxl_lcm(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components(time_cond_proj_dim=256) | |
| sd_pipe = StableDiffusionXLControlNetPipeline(**components) | |
| sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = sd_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.6787, 0.5117, 0.5558, 0.6963, 0.6571, 0.5928, 0.4121, 0.5468, 0.5057]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_conditioning_channels(self): | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| mid_block_type="UNetMidBlock2D", | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| time_cond_proj_dim=None, | |
| ) | |
| controlnet = ControlNetModel.from_unet(unet, conditioning_channels=4) | |
| assert type(controlnet.mid_block) is UNetMidBlock2D | |
| assert controlnet.conditioning_channels == 4 | |
| def get_dummy_components(self, time_cond_proj_dim=None): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| mid_block_type="UNetMidBlock2D", | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| time_cond_proj_dim=time_cond_proj_dim, | |
| ) | |
| torch.manual_seed(0) | |
| controlnet = ControlNetModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| conditioning_embedding_out_channels=(16, 32), | |
| mid_block_type="UNetMidBlock2D", | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| ) | |
| torch.manual_seed(0) | |
| scheduler = EulerDiscreteScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| steps_offset=1, | |
| beta_schedule="scaled_linear", | |
| timestep_spacing="leading", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| # SD2-specific config below | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer_2": tokenizer_2, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |