Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc and The InstantX Team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import pytest | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
| from diffusers import ( | |
| AutoencoderKL, | |
| FlowMatchEulerDiscreteScheduler, | |
| FluxControlNetPipeline, | |
| FluxTransformer2DModel, | |
| ) | |
| from diffusers.models import FluxControlNetModel | |
| from diffusers.utils import load_image | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| nightly, | |
| numpy_cosine_similarity_distance, | |
| require_big_gpu_with_torch_cuda, | |
| torch_device, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
| pipeline_class = FluxControlNetPipeline | |
| params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) | |
| batch_params = frozenset(["prompt"]) | |
| test_layerwise_casting = True | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = FluxTransformer2DModel( | |
| patch_size=1, | |
| in_channels=16, | |
| num_layers=1, | |
| num_single_layers=1, | |
| attention_head_dim=16, | |
| num_attention_heads=2, | |
| joint_attention_dim=32, | |
| pooled_projection_dim=32, | |
| axes_dims_rope=[4, 4, 8], | |
| ) | |
| torch.manual_seed(0) | |
| controlnet = FluxControlNetModel( | |
| patch_size=1, | |
| in_channels=16, | |
| num_layers=1, | |
| num_single_layers=1, | |
| attention_head_dim=16, | |
| num_attention_heads=2, | |
| joint_attention_dim=32, | |
| pooled_projection_dim=32, | |
| axes_dims_rope=[4, 4, 8], | |
| ) | |
| clip_text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder = CLIPTextModel(clip_text_encoder_config) | |
| torch.manual_seed(0) | |
| text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| sample_size=32, | |
| in_channels=3, | |
| out_channels=3, | |
| block_out_channels=(4,), | |
| layers_per_block=1, | |
| latent_channels=4, | |
| norm_num_groups=1, | |
| use_quant_conv=False, | |
| use_post_quant_conv=False, | |
| shift_factor=0.0609, | |
| scaling_factor=1.5035, | |
| ) | |
| scheduler = FlowMatchEulerDiscreteScheduler() | |
| return { | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer": tokenizer, | |
| "tokenizer_2": tokenizer_2, | |
| "transformer": transformer, | |
| "vae": vae, | |
| "controlnet": controlnet, | |
| } | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| control_image = randn_tensor( | |
| (1, 3, 32, 32), | |
| generator=generator, | |
| device=torch.device(device), | |
| dtype=torch.float16, | |
| ) | |
| controlnet_conditioning_scale = 0.5 | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 3.5, | |
| "output_type": "np", | |
| "control_image": control_image, | |
| "controlnet_conditioning_scale": controlnet_conditioning_scale, | |
| } | |
| return inputs | |
| def test_controlnet_flux(self): | |
| components = self.get_dummy_components() | |
| flux_pipe = FluxControlNetPipeline(**components) | |
| flux_pipe = flux_pipe.to(torch_device, dtype=torch.float16) | |
| flux_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = flux_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 32, 32, 3) | |
| expected_slice = np.array( | |
| [0.47387695, 0.63134766, 0.5605469, 0.61621094, 0.7207031, 0.7089844, 0.70410156, 0.6113281, 0.64160156] | |
| ) | |
| assert ( | |
| np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f"Expected: {expected_slice}, got: {image_slice.flatten()}" | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| pass | |
| def test_flux_image_output_shape(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| height_width_pairs = [(32, 32), (72, 56)] | |
| for height, width in height_width_pairs: | |
| expected_height = height - height % (pipe.vae_scale_factor * 2) | |
| expected_width = width - width % (pipe.vae_scale_factor * 2) | |
| inputs.update( | |
| { | |
| "control_image": randn_tensor( | |
| (1, 3, height, width), | |
| device=torch_device, | |
| dtype=torch.float16, | |
| ) | |
| } | |
| ) | |
| image = pipe(**inputs).images[0] | |
| output_height, output_width, _ = image.shape | |
| assert (output_height, output_width) == (expected_height, expected_width) | |
| class FluxControlNetPipelineSlowTests(unittest.TestCase): | |
| pipeline_class = FluxControlNetPipeline | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_canny(self): | |
| controlnet = FluxControlNetModel.from_pretrained( | |
| "InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16 | |
| ) | |
| pipe = FluxControlNetPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| text_encoder=None, | |
| text_encoder_2=None, | |
| controlnet=controlnet, | |
| torch_dtype=torch.bfloat16, | |
| ).to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| control_image = load_image( | |
| "https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg" | |
| ).resize((512, 512)) | |
| prompt_embeds = torch.load( | |
| hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt") | |
| ).to(torch_device) | |
| pooled_prompt_embeds = torch.load( | |
| hf_hub_download( | |
| repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt" | |
| ) | |
| ).to(torch_device) | |
| output = pipe( | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| control_image=control_image, | |
| controlnet_conditioning_scale=0.6, | |
| num_inference_steps=2, | |
| guidance_scale=3.5, | |
| max_sequence_length=256, | |
| output_type="np", | |
| height=512, | |
| width=512, | |
| generator=generator, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (512, 512, 3) | |
| original_image = image[-3:, -3:, -1].flatten() | |
| expected_image = np.array([0.2734, 0.2852, 0.2852, 0.2734, 0.2754, 0.2891, 0.2617, 0.2637, 0.2773]) | |
| assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2 | |